Knowledge Graph Construction from Text

AAAI 2017

JAY PUJARA, SAMEER SINGH, BHAVANA DALVI

Tutorial Overview

Part 1: Knowledge Graphs

Part 4: Critical Analysis

Tutorial Outline

Knowledge Graph Primer

[Jay]

- **Knowledge Extraction from Text**
 - **NLP Fundamentals**

Information Extraction

[Sameer]

[Bhavana]

Coffee Break

- 3. Knowledge Graph Construction
 - **Probabilistic Models**

Embedding Techniques b.

[Jay]

[Sameer]

4. Critical Overview and Conclusion [Bhavana]

What is Knowledge Extraction?

Text

John was born in Liverpool, to Julia and Alfred Lennon.

NLP Fundamentals

EXTRACTING STRUCTURES FROM LANGUAGE

What is NLP?

NLP

"Knowledge"

Unstructured
Ambiguous
Lots and lots of it!

Structured Precise, Actionable Specific to the task

Humans can read them, but

... very slowly

... can't remember all

... can't answer questions

Can be used for downstream applications, such as creating Knowledge Graphs!

What is NLP?

John was born in Liverpool, to Julia and Alfred Lennon.

What is Information Extraction?

Breaking it Down

Information Extraction

Entity resolution,
Entity linking,
Relation extraction...

Document

Coreference Resolution...

Sentence

Dependency Parsing,
Part of speech tagging,
Named entity recognition...

Lennon.. John Lennon...

the Pool

Mrs. Lennon..
.. his mother ..

his father he Alfred

John was born in Liverpool, to Julia and Alfred Lennon.

Tokenization & Sentence Splitting

"Mr. Bob Dobolina is thinkin' of a master plan. Why doesn't he quit?"

[Mr.] [Bob] [Dobolina] [is] [thinkin'] [of] [a] [master] [plan] [.] [Why] [doesn't] [he] [quit] [?]

How it is done:

- Regular expressions, but not trivial
 - Mr., Yahoo!, lower-case
- For non-English, incredibly difficult!
 - Chinese: no "space" character
- Non-trivial for some domains...
 - What is a "token" in BioNLP?

- Strictly constrains other NLP tasks
 - Parts of Speech
 - Dependency Parsing
- Directly effects KG nodes/edges
 - Mention boundaries
 - Relations within sentences

Tagging the Parts of Speech

John was born in Liverpool, to Julia and Alfred Lennon.

How it is done:

- Context is important!
 - run, table, bar, ...
- Label whole sentence together
 - "Structured prediction"
- Conditional Random Fields, ...
- Now: CNNs, LSTMs, ...

- Entities appear as nouns
- Verbs are very useful
 - For identifying relations
 - For identifying entity types
- Important for downstream NLP
 - NER, Dependency Parsing, ...

Detecting Named Entities

How it is done:

- Context is important!
 - Georgia, Washington, ...
 - John Deere, Thomas Cook, ...
 - Princeton, Amazon, ...
- Label whole sentence together
 - Structured prediction again

- Mentions describes the nodes
- Types are incredibly important!
 - Often restrict relations
- Fine-grained types are informative!
 - Brooklyn: city
 - Sanders: politician, senator

NER: Entity Types

Stanford CoreNLP

3 class: Location, Person, Organization

4 class: Location, Person, Organization, Misc

7 class: Location, Person, Organization, Money, Percent, Date, Time

spaCy.io

PERSON	People, including fictional.				
NORP	Nationalities or religious or political groups.				
FACILITY	Buildings, airports, highways, bridges, etc.				
ORG	Companies, agencies, institutions, etc.				
GPE	Countries, cities, states.				
LOC	Non-GPE locations, mountain ranges, bodies of water.				
PRODUCT	Objects, vehicles, foods, etc. (Not services.)				
EVENT	Named hurricanes, battles, wars, sports events, etc.				
WORK_OF_ART	Titles of books, songs, etc.				
LANGUAGE	Any named language.				

NER: Entity Types

Fine-grained Types

person actor architect artist athlete author coach director	doctor engineer monarch musician politician religious_le soldier terrorist	engineer monarch musician politician religious_leader soldier		ernity	nal_institution y_sorority eague	terrorist_organization government_agency government political_party educational_department military news_agency	
city i	oody_of_water sland mountain	product engine airplane car ship spacecraft train			camera mobile_phone computer software game instrument weapon	art film play	written_work newspaper music
province a	glacier astral_body cemetery park			aft			military_conflict natural_disaster sports_event terrorist_attack
building airport dam hospital hotel library power_statio restaurant sports_facilit theater	language	ıl_deg	ree	biolo med disea symp drug body	otom /_part g_thing nal	broadcas tv_chani currency stock_ex algorithm	/ kchange m iming_language system

More on this later...

Dependency Parsing

How it is done:

- Model: score trees using features
 - Lexical: words, POS, ...
 - Structure: distance, ...
- Prediction: Search over trees
 - greedy, spanning tree, belief propagation, dynamic prog, ...

- Incredibly useful for relations!
 - What verb is attached?
 - Relation to which mention?
- Incredibly useful for attributes!
 - Appositives: "X, the CEO, ..."
- Paths are used as surface relations

Dependency Paths

Text Patterns

John, Liverpool

John, Julia

John, Alfred Lennon

"was born in"

"was born in Liverpool, to"

"was born in Liverpool, to Julia and"

Dependency Paths

"was born in"

"was born to"

"was born to"

Within-document Coreference

He...

Lennon..

Lennon..

the Pool

John Lennon...

Mrs. Lennon..

Alfred

his father

he

John was born in Liverpool, to Julia and Alfred Lennon.

How it is done:

- Mo`del: score pairwise links
 - dep path, similarity, types, ...
 - "representative mention"
- Prediction: Search over clusterings
 - greedy (left to right), ILP,
 belief propagation, MCMC, ...

- More context for each entity!
- Many relations occur on pronouns
 - "He is married to her"
- Coref can be used for types
 - Nominals: The president, ...
- Difficult, so often ignored

Information Extraction

Surface Patterns

Combine tokens, dependency paths, and entity types to define rules.

Bill Gates, the CEO of Microsoft, said ...

Mr. Jobs, the brilliant and charming CEO of Apple Inc., said ...

- ... announced by Steve Jobs, the CEO of Apple.
- ... announced by Bill Gates, the director and CEO of Microsoft.
- ... mused Bill, a former CEO of Microsoft.
- and many other possible instantiations...

Rule-Based Extraction

Variations

Source:

- Manually specified
- Learned from Data

Multiple Rules:

- Attach priorities/precedence
- Attach probabilities (more later)

High precision: when it fires, it's correct Easy to explain predictions Easy to fix mistakes

However...

Only work when the rules fire

Poor recall: Do not generalize!

Supervised Extraction

Machine Learning: hopefully, generalizes the labels in the *right way*

Use all of NLP as features: words, POS, NER, dependencies, embeddings

However

Usually, a lot of labeled data is needed, which is expensive & time consuming.
Requires a lot of feature engineering!

Entity Resolution & Linking

...during the late 60's and early 70's, **Kevin Smith** worked with several local...

...the term hip-hop is attributed to **Lovebug Starski**. What does it actually mean...

Like Back in 2008, the Lions drafted **Kevin Smith**, even though Smith was badly...

... backfield in the wake of **Kevin Smith**'s knee injury, and the addition of Haynesworth...

The filmmaker **Kevin Smith** returns to the role of Silent Bob...

Nothing could be more irrelevant to **Kevin Smith**'s audacious ''Dogma'' than ticking off...

... The Physiological Basis of Politics," by **Kevin Smith**, Douglas Oxley, Matthew Hibbing...

Entity Names: Two Main Problems

Entities with Same Name

Same type of entities share names

Kevin Smith, John Smith, Springfield, ...

Things named after each other

Clinton, Washington, Paris, Amazon, Princeton, Kingston, ...

Partial Reference

First names of people, Location instead of team name, Nick names

Different Names for Entities

Nick Names

Bam Bam, Drumpf, ...

Typos/Misspellings

Baarak, Barak, Barrack, ...

Inconsistent References

MSFT, APPL, GOOG...

Entity Linking Approach

Washington drops 10 points after game with UCLA Bruins.

Candidate Generation

Washington DC, George Washington, Washington state, Lake Washington, Washington Huskies, Denzel Washington, University of Washington, Washington High School, ...

Entity Types

LOC/ORG

Washington DC, George Washington, Washington state, Lake Washington, Washington Huskies, Denzel Washington, University of Washington, Washington High School, ...

Coreference

UWashington, Huskies Washington DC, George Washington, Washington state, Lake Washington, Washington Huskies, Denzel Washington, University of Washington, Washington High School, ...

Coherence

UCLA Bruins, USC Trojans Washington DC, George Washington, Washington state, Lake Washington, Washington Huskies, Denzel Washington, University of Washington, Washington High School, ...

Information Extraction

