Knowledge Graph Construction from Text

AAAI 2017

Jay Pujara, Sameer Singh, Bhavana Dalvi
Tutorial Overview

Part 1: Knowledge Graphs

Part 2: Knowledge Extraction

Part 3: Graph Construction

Part 4: Critical Analysis
Tutorial Outline

1. Knowledge Graph Primer [Jay]
2. Knowledge Extraction from Text
 a. NLP Fundamentals [Sameer]
 b. Information Extraction [Bhavana]

Coffee Break

3. Knowledge Graph Construction
 a. Probabilistic Models [Jay]
 b. Embedding Techniques [Sameer]

4. Critical Overview and Conclusion [Bhavana]
Knowledge Graph Construction

TOPICS:

Problem Setting
Probabilistic Models
Embedding Techniques
Knowledge Graph Construction

TOPICS:

Problem Setting
Probabilistic Models
Embedding Techniques
Reminder: Basic problems

- **Who** are the entities (nodes) in the graph?

- **What** are their attributes and types (labels)?

- **How** are they related (edges)?
Graph Construction Issues

Extracted knowledge is:

• ambiguous:
 ◦ Ex: Beetles, beetles, Beatles
 ◦ Ex: citizenOf, livedIn, bornIn
Graph Construction Issues

Extracted knowledge is:

- ambiguous

- incomplete
 - Ex: missing relationships
 - Ex: missing labels
 - Ex: missing entities
Graph Construction Issues

Extracted knowledge is:

• ambiguous

• incomplete

• inconsistent
 ◦ Ex: Cynthia Lennon, Yoko Ono
 ◦ Ex: exclusive labels (alive, dead)
 ◦ Ex: domain-range constraints
Graph Construction Issues

Extracted knowledge is:

- ambiguous
- incomplete
- inconsistent
Graph Construction approach

- Graph construction *cleans* and *completes* extraction graph

- Incorporate ontological constraints and relational patterns

- Discover statistical relationships within knowledge graph
Knowledge Graph Construction

TOPICS:

- **Problem Setting**
- **Probabilistic Models**
- **Embedding Techniques**
Graph Construction
Probabilistic Models

TOPICS:

OVERVIEW

GRAPHICAL MODELS

RANDOM WALK METHODS
Graph Construction
Probabilistic Models

TOPICS:

OVERVIEW

GRAPHICAL MODELS

RANDOM WALK METHODS
Beyond Pure Reasoning

- Classical AI approach to knowledge: reasoning

\[\text{Lbl}(\text{Socrates, Man}) & \text{Sub}(\text{Man, Mortal}) \rightarrow \text{Lbl}(\text{Socrates, Mortal}) \]
Beyond Pure Reasoning

- Classical AI approach to knowledge: reasoning
 \[\text{Lbl}(\text{Socrates, Man}) \land \text{Sub}(\text{Man, Mortal}) \rightarrow \text{Lbl}(\text{Socrates, Mortal}) \]
- Reasoning difficult when extracted knowledge has errors
Beyond Pure Reasoning

- Classical AI approach to knowledge: reasoning
 \[\text{Lbl}(\text{Socrates, Man}) \land \text{Sub}(\text{Man, Mortal}) \rightarrow \text{Lbl}(\text{Socrates, Mortal}) \]
- Reasoning difficult when extracted knowledge has errors
- Solution: probabilistic models
 \[P(\text{Lbl}(\text{Socrates, Mortal}) | \text{Lbl}(\text{Socrates, Man}) = 0.9) \]
Graph Construction
Probabilistic Models

TOPICS:

OVERVIEW

GRAPHICAL MODELS

RANDOM WALK METHODS
Graphical Models: Overview

- Define **joint probability distribution** on knowledge graphs

- Each candidate fact in the knowledge graph is a **variable**

- Statistical signals, ontological knowledge and rules parameterize the **dependencies** between variables

- Find most likely knowledge graph by **optimization/sampling**
Define a graphical model to perform all three of these tasks simultaneously!

- **Who** are the entities (nodes) in the graph?
- **What** are their attributes and types (labels)?
- **How** are they related (edges)?
Knowledge Graph Identification

P(Who, What, How | Extractions)
Probabilistic Models

• Use dependencies between facts in KG

• Probability defined *jointly* over facts

![Diagram with images and probabilities](image-url)
What determines probability?

• Statistical signals from text extractors and classifiers
What determines probability?

- **Statistical signals from text extractors and classifiers**
 - $P(R(\text{John, Spouse, Yoko})) = 0.75$; $P(R(\text{John, Spouse, Cynthia})) = 0.25$
 - $\text{LevenshteinSimilarity}(\text{Beatles, Beetles}) = 0.9$
What determines probability?

- Statistical signals from text extractors and classifiers

- Ontological knowledge about domain
What determines probability?

• Statistical signals from text extractors and classifiers

• Ontological knowledge about domain
 • Functional(Spouse) & R(A,Spouse,B) -> !R(A,Spouse,C)
 • Range(Spouse, Person) & R(A,Spouse,B) -> Type(B, Person)
What determines probability?

- Statistical signals from text extractors and classifiers
- Ontological knowledge about domain
- Rules and patterns mined from data
What determines probability?

• Statistical signals from text extractors and classifiers

• Ontological knowledge about domain

• Rules and patterns mined from data
 • R(A, Spouse, B) & R(A, Lives, L) -> R(B, Lives, L)
 • R(A, Spouse, B) & R(A, Child, C) -> R(B, Child, C)
What determines probability?

• **Statistical signals from text extractors and classifiers**
 - \(P(R(\text{John, Spouse, Yoko}))=0.75; \ P(R(\text{John, Spouse, Cynthia}))=0.25\)
 - LevenshteinSimilarity(Beatles, Beetles) = 0.9

• **Ontological knowledge about domain**
 - Functional(Spouse) & \(R(\text{A, Spouse, B}) \rightarrow !R(\text{A, Spouse, C})\)
 - Range(Spouse, Person) & \(R(\text{A, Spouse, B}) \rightarrow \text{Type}(\text{B, Person})\)

• **Rules and patterns mined from data**
 - \(R(\text{A, Spouse, B}) \& R(\text{A, Lives, L}) \rightarrow R(\text{B, Lives, L})\)
 - \(R(\text{A, Spouse, B}) \& R(\text{A, Child, C}) \rightarrow R(\text{B, Child, C})\)
Example: The Fab Four

THE BEATLES

SUPER HEROES

AMAZING NEW SUPER HEROES OF SCIENCE
Illustration of KG Identification

Uncertain Extractions:
- .5: Lbl(Fab Four, novel)
- .7: Lbl(Fab Four, musician)
- .9: Lbl(Beatles, musician)
- .8: Rel(Beatles, AlbumArtist, Abbey Road)
Illustration of KG Identification

Uncertain Extractions:
.5: Lbl(Fab Four, novel)
.7: Lbl(Fab Four, musician)
.9: Lbl(Beatles, musician)
.8: Rel(Beatles, AlbumArtist, Abbey Road)
Illustration of KG Identification

Uncertain Extractions:
.5: Lbl(Fab Four, novel)
.7: Lbl(Fab Four, musician)
.9: Lbl(Beatles, musician)
.8: Rel(Beatles, AlbumArtist, Abbey Road)

Ontology:
Dom(albumArtist, musician)
Mut(novel, musician)

Extraction Graph

PUJARA+ISWC13; PUJARA+AIMAG15
Illustration of KG Identification

Uncertain Extractions:
.5: Lbl(Fab Four, novel)
.7: Lbl(Fab Four, musician)
.9: Lbl(Beatles, musician)
.8: Rel(Beatles, AlbumArtist, Abbey Road)

Ontology:
Dom(albumArtist, musician)
Mut(novel, musician)

Entity Resolution:
SameEnt(Fab Four, Beatles)

(Annotated) Extraction Graph:

[Diagram showing entities and relationships including Fab Four, Beatles, novel, musician, Abbey Road, and AlbumArtist with corresponding labels and relations.]
Illustration of KG Identification

Uncertain Extractions:
.5: Lbl(Fab Four, novel)
.7: Lbl(Fab Four, musician)
.9: Lbl(Beatles, musician)
.8: Rel(Beatles, AlbumArtist, Abbey Road)

Ontology:
Dom(albumArtist, musician)
Mut(novel, musician)

Entity Resolution:
SameEnt(Fab Four, Beatles)

(Annotated) Extraction Graph

After Knowledge Graph Identification
Probabilistic graphical model for KG

Lbl(Beatles, novel)

Lbl(Beatles, musician)

Rel(Beatles, AlbumArtist, Abbey Road)

Lbl(Beatles, novel)

Lbl(Fab Four, novel)

Rel(Fab Four, AlbumArtist, Abbey Road)
Defining graphical models

- Many options for defining a graphical model

- We focus on two approaches, MLNs and PSL, that use rules

- **MLNs** treat facts as Boolean, use sampling for satisfaction

- **PSL** infers a “truth value” for each fact via optimization
Rules for KG Model

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100:</td>
<td>Subsumes(L_1,L_2) & Label(E,L_1) -> Label(E,L_2)</td>
</tr>
<tr>
<td>100:</td>
<td>Exclusive(L_1,L_2) & Label(E,L_1) -> !Label(E,L_2)</td>
</tr>
<tr>
<td>100:</td>
<td>Inverse(R_1,R_2) & Relation(R_1,E,O) --> Relation(R_2,O,E)</td>
</tr>
<tr>
<td>100:</td>
<td>Subsumes(R_1,R_2) & Relation(R_1,E,O) --> Relation(R_2,E,O)</td>
</tr>
<tr>
<td>100:</td>
<td>Exclusive(R_1,R_2) & Relation(R_1,E,O) --> !Relation(R_2,E,O)</td>
</tr>
<tr>
<td>100:</td>
<td>Domain(R,L) & Relation(R,E,O) --> Label(E,L)</td>
</tr>
<tr>
<td>100:</td>
<td>Range(R,L) & Relation(R,E,O) --> Label(O,L)</td>
</tr>
<tr>
<td>10:</td>
<td>SameEntity(E_1,E_2) & Label(E_1,L) --> Label(E_2,L)</td>
</tr>
<tr>
<td>10:</td>
<td>SameEntity(E_1,E_2) & Relation(R,E_1,O) --> Relation(R,E_2,O)</td>
</tr>
<tr>
<td>1:</td>
<td>Label_NYT(E,L) --> Label(E,L)</td>
</tr>
<tr>
<td>1:</td>
<td>Label_YouTube(E,L) --> Label(E,L)</td>
</tr>
<tr>
<td>1:</td>
<td>Relation_LATimes(R,E,O) --> Relation(R,E,O)</td>
</tr>
<tr>
<td>1:</td>
<td>!Relation_LATimes(R,E,O) --> !Label(E,L)</td>
</tr>
<tr>
<td>1:</td>
<td>!Label(E,L) --> !Label(E,L)</td>
</tr>
</tbody>
</table>

Rules for KG Model: JIANG+ICDM12; PUJARA+ISWC13, PUJARA+AIMAG15
Rules to Distributions

• Rules are *grounded* by substituting literals into formulas

\[w_r : \text{SAMEENT}(\text{Fab Four, Beatles}) \land \text{LBL}(\text{Beatles, musician}) \Rightarrow \text{LBL}(\text{Fab Four, musician}) \]

• Each ground rule has a weighted satisfaction derived from the formula’s truth value

\[
P(G | E) = \frac{1}{Z} \exp \left[\sum_{r \in R} w_r \phi_r (G, E) \right]
\]

• Together, the ground rules provide a joint probability distribution over knowledge graph facts, conditioned on the extractions
Probability Distribution over KGs

\[P(G \mid E) = \frac{1}{Z} \exp \left[- \sum_{r \in R} w_r \varphi_r(G) \right] \]

\[\text{CandLbl}_T(\text{FabFour}, \text{novel}) \quad \Rightarrow \quad \text{Lbl}(\text{FabFour}, \text{novel}) \]

\[\text{Mut}(\text{novel}, \text{musician}) \quad \land \quad \text{Lbl}(\text{Beatles}, \text{novel}) \quad \Rightarrow \quad \neg \text{Lbl}(\text{Beatles}, \text{musician}) \]

\[\text{SameEnt}(\text{Beatles}, \text{FabFour}) \quad \land \quad \text{Lbl}(\text{Beatles}, \text{musician}) \quad \Rightarrow \quad \text{Lbl}(\text{FabFour}, \text{musician}) \]
\[\phi_1 \text{ CandLbl}_{\text{struct}}(\text{FabFour, novel}) \Rightarrow \text{Lbl(FabFour, novel)} \]

\[\phi_2 \text{ CandRel}_{\text{pat}}(\text{Beatles, AlbumArtist, AbbeyRoad}) \Rightarrow \text{Rel(Beatles, AlbumArtist, AbbeyRoad)} \]

\[\phi_3 \text{ SameEnt}(\text{Beatles, FabFour}) \wedge \text{Lbl(Beatles, musician)} \Rightarrow \text{Lbl(FabFour, musician)} \]

\[\phi_4 \text{ Dom(AlbumArtist, musician)} \wedge \text{Rel(Beatles, AlbumArtist, AbbeyRoad)} \Rightarrow \text{Lbl(Beatles, musician)} \]

\[\phi_5 \text{ Mut(musician, novel)} \wedge \text{Lbl(FabFour, musician)} \Rightarrow \neg \text{Lbl(FabFour, novel)} \]
How do we get a knowledge graph?

Have: $P(KG)$ for all KGs

Need: best KG

MAP inference: optimizing over distribution to find the best knowledge graph
Inference and KG optimization

• Finding the best KG satisfying weighed rules: NP Hard

• MLNs [discrete]: Monte Carlo sampling methods
 • Solution quality dependent on burn-in time, iterations, etc.

• PSL [continuous]: optimize convex linear surrogate
 • Fast optimization, ¾-optimal MAX SAT lower bound
Graphical Models Experiments

Data: ~1.5M extractions, ~70K ontological relations, ~500 relation/label types
Task: Collectively construct a KG and evaluate on 25K target facts

Comparisons:
- Extract: Average confidences of extractors for each fact in the NELL candidates
- Rules: Default, rule-based heuristic strategy used by the NELL project
- MLN: Jiang+, ICDM12 – estimates marginal probabilities with MC-SAT
- PSL: Pujara+, ISWC13 – convex optimization of continuous truth values with ADMM

Running Time: Inference completes in 10 seconds, values for 25K facts

<table>
<thead>
<tr>
<th></th>
<th>AUC</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extract</td>
<td>.873</td>
<td>.828</td>
</tr>
<tr>
<td>Rules</td>
<td>.765</td>
<td>.673</td>
</tr>
<tr>
<td>MLN (Jiang, 12)</td>
<td>.899</td>
<td>.836</td>
</tr>
<tr>
<td>PSL (Pujara, 13)</td>
<td>.904</td>
<td>.853</td>
</tr>
</tbody>
</table>

JIANG+ICDM12; PUJARA+ISWC13
Graphical Models: Pros/Cons

BENEFITS
- Define probability distribution over KGs
- Easily specified via rules
- Fuse knowledge from many different sources

DRAWBACKS
- Requires optimization over all KG facts - overkill
- Dependent on rules from ontology/expert
- Require probabilistic semantics - unavailable
Graph Construction
Probabilistic Models

TOPICS:

OVERVIEW

GRAPHICAL MODELS

RANDOM WALK METHODS
Random Walk Overview

- Given: a query of an entity and relation

- Starting at the entity, randomly walk the KG

- Random walk ends when reaching an appropriate goal

- Learned parameters bias choices in the random walk

- Output relative probabilities of goal states
Random Walk Illustration

Query: $R(\text{Lennon}, \text{PlaysInstrument}, ?)$
Random Walk Illustration

Query: R(Lennon, PlaysInstrument, ?)
Random Walk Illustration

Query: \(R(\text{Lennon}, \text{PlaysInstrument}, ?) \)
Random Walk Illustration

Query Q: R(Lennon, PlaysInstrument, ?)
Random Walk Illustration

Query Q: R(Lennon, PlaysInstrument, ?)
Random Walk Illustration

Query Q: R(Lennon, PlaysInstrument, ?)
Random Walk Illustration

Query Q: $R(\text{Lennon, PlaysInstrument, }?)$

Path

$P(Q|\pi=<\text{coworker, playsInstrument}>)$ W_{π}

Weight of path
Random Walk Illustration

Query Q: $R(\text{Lennon, PlaysInstrument, ?})$

$P(Q|\pi=\langle\text{coworker, playsInstrument}\rangle) W_\pi$
Random Walk Illustration

Query Q: \(R(\text{Lennon, PlaysInstrument, }?) \)

\[
P(Q | \pi = \langle \text{coworker, playsInstrument} \rangle) \quad W_\pi
\]
Random Walk Illustration

Query Q: R(Lennon, PlaysInstrument, ?)
Random Walk Illustration

Query Q: \(R(\text{Lennon, PlaysInstrument, ?}) \)

\[
P(Q|\pi=\langle \text{albumArtist, hasInstrument} \rangle) \ W_{\pi}
\]
Random Walk Illustration

Query Q: R(Lennon, PlaysInstrument, ?)

\[P(Q | \pi = \langle \text{albumArtist}, \text{hasInstrument} \rangle) \cdot W_\pi \]
Query: \text{R(Lennon, PlaysInstrument, ?)}
Recent Random Walk Methods

PRA: Path Ranking Algorithm

- Performs random walk of **imperfect knowledge graph**
- Estimates **transition probabilities** using KG
- For each relation, learns **parameters for paths** through the KG

ProPPR: Programming with Personalized PageRank

- Constructs **proof graph**
 - Nodes are partially-ground clauses with one or more facts
 - Edges are proof-transformations
- **Parameters** are learned for each **ground entity** and **rule**
Recent Random Walk Methods

PRA: Path Ranking Algorithm

- Performs random walk of imperfect knowledge graph
- Estimates transition probabilities using KG
- For each relation, learns parameters for paths through the KG

ProPPR: Programming with Personalized PageRank

- Constructs proof graph
 - Nodes are partially-ground clauses with one or more facts
 - Edges are proof-transformations
- Parameters are learned for each ground entity and rule
PRA in a nutshell

\[
\text{score}(q.s \rightarrow e; q) = \sum_{\pi_i \in \Pi_b} P(q.s \rightarrow e; \pi_i) W_{\pi_i}
\]
PRA in a nutshell

\[
\text{score}(q.s \rightarrow e; q) = \sum_{\pi_i \in \Pi_b} P(q.s \rightarrow e; \pi_i)W_{\pi_i}
\]

Filter paths based on HITS and accuracy
PRA in a nutshell

\[\text{score}(q.s \rightarrow e; q) = \sum_{\pi_i \in \Pi_b} P(q.s \rightarrow e; \pi_i) W_{\pi_i} \]

Filter paths based on HITS and accuracy

Estimate probabilities efficiently with dynamic programming
PRA in a nutshell

\[
\text{score}(q.s \rightarrow e; q) = \sum_{\pi_i \in \Pi_b} P(q.s \rightarrow e; \pi_i) W_{\pi_i}
\]

Filter paths based on HITS and accuracy

Estimate probabilities efficiently with dynamic programming

Path weights are learned with logistic regression
Recent Random Walk Methods

PRA: Path Ranking Algorithm

- Performs random walk of imperfect knowledge graph
- Estimates transition probabilities using KG
- For each relation, learns parameters for paths through the KG

ProPPR: ProbLog + Personalized PageRank

- Constructs proof graph
 - Nodes are partially-ground clauses with one or more facts
 - Edges are proof-transformations
- Parameters are learned for each ground entity and rule
ProPPR-ized PRA example

Query Q: R(Lennon, PlaysInstrument, ?)

R(,Coworker,X) R(,AlbumArtist,J)
R(X,PlaysInstrument,Y) R(J,HasInstrument,K)

Unbound variables in proof tree!
ProPPR-ized PRA example

Query Q: R(Lennon, PlaysInstrument, ?)

R(,Coworker,X)
R(X,PlaysInstrument,Y)
R(AlbumArtist,J)
R(J,HasInstrument,K)

R(,Coworker,X)
R(,PlaysInstrument,Y)
ProPPR-ized PRA example

Query Q: R(Lennon, PlaysInstrument, ?)

R(,Coworker,X)
R(X,PlaysInstrument,Y)
R(,AlbumArtist,J)
R(J,HasInstrument,K)
ProPPR-ized PRA example

Query Q: R(Lennon, PlaysInstrument, ?)

R(John, Coworker, X)
R(X, PlaysInstrument, Y)
R(John, Coworker, ?)
R(? , PlaysInstrument, Y)
R(? , AlbumArtist, J)
R(J, HasInstrument, K)
ProPPR-ized PRA example

Query Q: \(R(\text{Lennon, PlaysInstrument, } ?) \)

\[
\begin{align*}
R(\text{Coworker, X}) \quad & R(\text{X, PlaysInstrument, Y}) \\
R(\text{Coworker, } J) \quad & R(\text{J, HasInstrument, K})
\end{align*}
\]
Query Q: R(Lennon, PlaysInstrument, ?)

R(Lennon,Coworker,X)
R(X, PlaysInstrument, Y)
R(J, AlbumArtist, J)
R(J, HasInstrument, K)
R(Ringo, Coworker, Y)
R(Y, PlaysInstrument, Y)
R(Ringo, Coworker, Y)
R(Y, PlaysInstrument, Y)
ProPPR-ized PRA example

Query Q: \(R(\text{Lennon, PlaysInstrument, }?) \)

\[
\begin{align*}
R(\text{Lennon}, & \text{Coworker}, X) \\
R(\text{X,PlaysInstrument}, & Y) \\
R(\text{J}, & \text{HasInstrument}, K) \\
\end{align*}
\]
ProPPR-ized PRA example

Query Q: R(Lennon, PlaysInstrument, ?)

R(?, Coworker,)
R(X, PlaysInstrument,)
R(?, AlbumArtist, J)
R(?, HasInstrument, K)
R(?, Coworker,)
R(?, PlaysInstrument,)
ProPPR in a nutshell

\[
\min_{\bf w} - \left(\sum_{k \in +} \log p_{\nu_0}[u^k_+] + \sum_{k \in -} \log(1 - p_{\nu_0}[u^k_-]) \right) + \mu \| \bf w \|_2^2
\]

- **Input:** queries, positive answers, negative answers
- **Goal:** \(p_{\nu_0}[u^k_+] \geq p_{\nu_0}[u^k_-] \) (page rank from RW)
- **Learn:** random walk weights
- **Train** via stochastic gradient descent

WANG+MLJ15
Results from PRA and ProPPR

Task:
- 1M extractions for 3 domains;
- ~100s of training queries
- ~1000s of test queries
- AUC of extractions alone is 0.7

![Relation Prediction AUC](chart.png)

WANG+MLJ15
Random Walks: Pros/Cons

BENEFITS

• KG query estimation independent of KG size

• Model training produces interpretable, logical rules

• Robust to noisy extractions through probabilistic form

DRAWBACKS

• Full KG completion task inefficient

• Training data difficult to obtain at scale

• Input must follow probabilistic semantics
Two classes of Probabilistic Models

Graphical Models
- Possible facts in KG are variables
- Logical rules relate facts
- Probability \propto satisfied rules
- Universally-quantified

Random Walk Methods
- Possible facts posed as queries
- Random walks of the KG constitute “proofs”
- Probability \propto path lengths/transitions
- Locally grounded