Mining Knowledge Graphs from Text

WSDM 2018

Jay Pujara, Sameer Singh
Tutorial Overview

Part 1: Knowledge Graphs

Part 2: Knowledge Extraction

Part 3: Graph Construction

Part 4: Critical Analysis
Tutorial Outline

1. Knowledge Graph Primer [Jay]

2. Knowledge Extraction Primer [Jay]

3. Knowledge Graph Construction
 a. Probabilistic Models [Jay]
 b. Embedding Techniques [Sameer]

Coffee Break

4. Critical Overview and Conclusion [Sameer]
What is NLP?

Unstructured
Ambiguous
Lots and lots of it!

Humans can read them, but
... very slowly
... can’t remember all
... can’t answer questions

Structured
Precise, Actionable
Specific to the task

Can be used for downstream applications, such as creating Knowledge Graphs!
John was born in Liverpool, to Julia and Alfred Lennon.
Breaking it Down

Information Extraction
- Entity resolution,
- Entity linking,
- Relation extraction...

Coreference Resolution...

Dependency Parsing,
- Part of speech tagging,
- Named entity recognition...

John was born in Liverpool, to Julia and Alfred Lennon.
Tagging the Parts of Speech

John was born in Liverpool, to Julia and Alfred Lennon.

Nouns are entities

Verbs are relations

• Common approaches include CRFs, CNNs, LSTMs
Detecting Named Entities

John was born in Liverpool, to Julia and Alfred Lennon.

- Structured prediction approaches
- Capture entity mentions and entity types
Combine tokens, dependency paths, and entity types to define rules.

Bill Gates, the CEO of Microsoft, said ...
Mr. Jobs, the brilliant and charming CEO of Apple Inc., said ...
... announced by Steve Jobs, the CEO of Apple.
... announced by Bill Gates, the director and CEO of Microsoft.
... mused Bill, a former CEO of Microsoft.
and many other possible instantiations...
John was born in Liverpool, to Julia and Alfred Lennon.

- Pairwise model for each noun/pronoun
- Can consolidate information, provide context
...during the late 60’s and early 70’s, **Kevin Smith** worked with several local...

...the term hip-hop is attributed to **Lovebug Starski**. What does it actually mean...

Like Back in 2008, the Lions drafted **Kevin Smith**, even though Smith was badly...

... backfield in the wake of **Kevin Smith**’s knee injury, and the addition of Haynesworth...

The filmmaker **Kevin Smith** returns to the role of Silent Bob...

Nothing could be more irrelevant to **Kevin Smith**’s audacious ’’Dogma’’ than ticking off...

... The Physiological Basis of Politics,” by **Kevin Smith**, Douglas Oxley, Matthew Hibbing...
Entity Names: Two Main Problems

Entities with Same Name

- Same type of entities share names
 - Kevin Smith, John Smith, Springfield, ...

- Things named after each other
 - Clinton, Washington, Paris, Amazon, Princeton, Kingston, ...

- Partial Reference
 - First names of people, Location instead of team name, Nick names

Different Names for Entities

- Nick Names
 - Bam Bam, Drumpf, ...

- Typos/Misspellings
 - Baarak, Barak, Barrack, ...

- Inconsistent References
 - MSFT, APPL, GOOG...
Entity Linking Approach

Candidate Generation

Washington drops 10 points after game with UCLA Bruins.

Entity Types

LOC/ORG

Coreference

UWashington, Huskies

Coherence

UCLA Bruins, USC Trojans

John Lennon was born in Liverpool, to Julia and Alfred Lennon.
Information Extraction

3 concrete sub-problems:
- Defining domain
- Learning extractors
- Scoring the facts

3 levels of supervision:
- Supervised
- Semi-supervised
- Unsupervised
Effect of supervision on extractions

Precision, Human efforts

Recall, Speed
Information Extraction

3 CONCRETE SUB-PROBLEMS

Defining domain
Learning extractors
Scoring the facts

3 LEVELS OF SUPERVISION

Supervised
Semi-supervised
Unsupervised
Defining Domain: Manual

Everything

Animals

Mammals

Reptiles

Food

Fruits

Vegetables

Consumes

Subset

Disjoint

[Toward an Architecture for Never-Ending Language Learning, Carlson et al. AAAI 2010]
Defining Domain: Semi-automatic

- Subset of types are manually defined
- SSL methods discover new types from unlabeled data

[Exploratory Learning, Dalvi et al., ECML 2013]
[Hierarchical Semi-supervised Classification with Incomplete Class Hierarchies, Dalvi et al., WSDM 2016]
Defining Domain: Automatic

• Any noun phrase is a candidate entity
 ◦ Dog, cat, cow, reptile, mammal, apple, greens, mixed greens, lettuce, red leaf lettuce, romaine lettuce, iceberg lettuce...

• Any verb phrase is a candidate relation
 ◦ Eats, feasts on, grazes, consumes,
Information Extraction

3 CONCRETE SUB-PROBLEMS

Defining domain
Learning extractors
Scoring candidate facts

3 LEVELS OF SUPERVISION

Supervised
Semi-supervised
Unsupervised
Learning Extractors

- **Supervised**: high precision patterns
 - `<PERSON>` plays in `<BAND>`

- **Semi-supervised**: Bootstrapping to learn patterns
 - Create examples *(John Lennon, Beatles)*, find patterns
 - Manually correct incorrect patterns

- **Unsupervised**: cluster phrases with constraints
 - Identify candidate verb phrases, find candidate arguments, cluster by NER types
Information Extraction

3 CONCRETE SUB-PROBLEMS

Defining domain
Learning extractors

Scoring candidate facts

3 LEVELS OF SUPERVISION

Supervised
Semi-supervised
Unsupervised
Scoring the candidate facts

- **Human defined scoring function or**
 Scoring function learnt using supervised ML with large amount of training data
 {expensive, high precision}

- **Small amount of training data is available**
 scoring refined over multiple iterations using both labeled and unlabeled data

- **Completely automatic (Self-training)**
 Confidence(extraction pattern) \propto (#unique instances it could extract)
 Score(candidate fact) \propto (#distinct extraction patterns that support it)
 {cheap, leads to semantic drift}
Impact of early supervision

Defining domain

- Defines the domain
- Enables inheritance and mutual exclusion at extractor level

Extractors for each relation of interest

- Puts constraints on the space of possibly true extractions
- Early removal of noisy extraction patterns can avoid semantic drift in later stages

Scoring the candidate facts

Domain expertise needed
Effect of supervision on extractions

Precision, Human efforts

Recall, Speed
IE systems in practice

<table>
<thead>
<tr>
<th></th>
<th>Defining domain</th>
<th>Learning extractors</th>
<th>Scoring candidate facts</th>
<th>Fusing extractors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConceptNet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NELL</td>
<td></td>
<td></td>
<td></td>
<td>Heuristic rules</td>
</tr>
<tr>
<td>Knowledge Vault</td>
<td></td>
<td></td>
<td></td>
<td>Classifier</td>
</tr>
<tr>
<td>OpenIE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Knowledge Extraction: Key Points

- Built on the foundation of NLP techniques
 - Part-of-speech tagging, dependency parsing, named entity recognition, coreference resolution...
 - Challenging problems with very useful outputs
- Information extraction techniques use NLP to:
 - define the domain
 - extract entities and relations
 - score candidate outputs
- Trade-off between manual & automatic methods