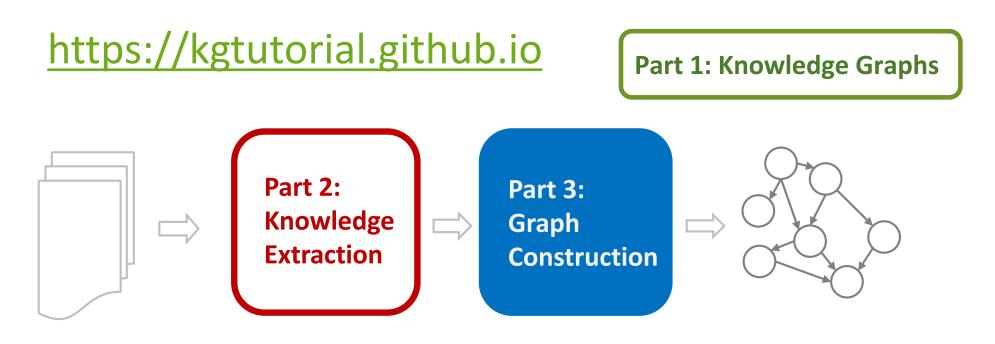
Mining Knowledge Graphs from Text

WSDM 2018

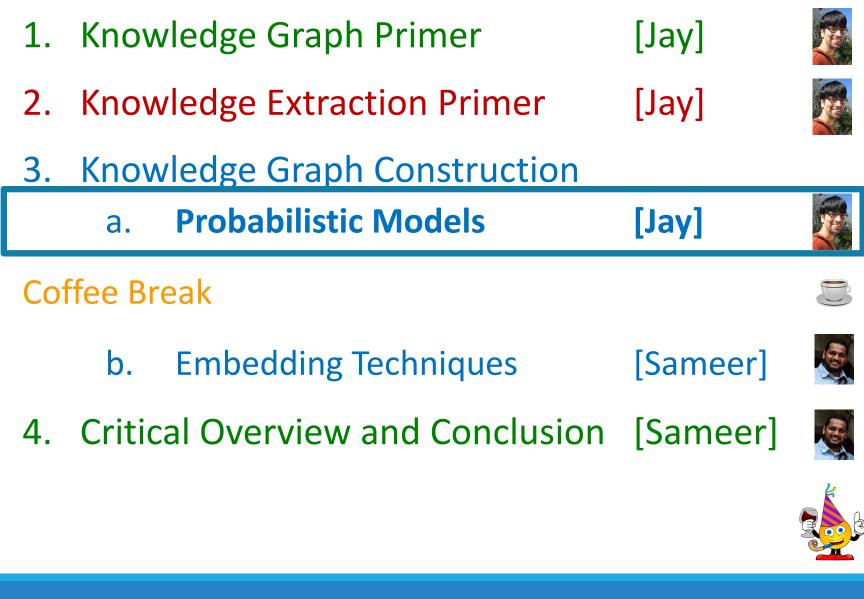
JAY PUJARA, SAMEER SINGH

Tutorial Overview



Part 4: Critical Analysis

Tutorial Outline



Knowledge Graph Construction

TOPICS:

- PROBLEM SETTING
- PROBABILISTIC MODELS
- Embedding Techniques

Knowledge Graph Construction

TOPICS:

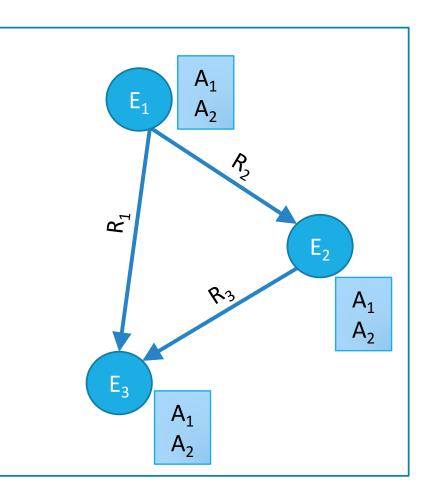
PROBLEM SETTING

Probabilistic Models

Embedding Techniques

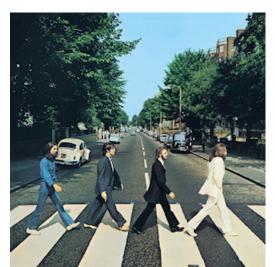
Reminder: Basic problems

- Who are the entities (nodes) in the graph?
- What are their attributes and types (labels)?
- **How** are they related (edges)?



Extracted knowledge is:

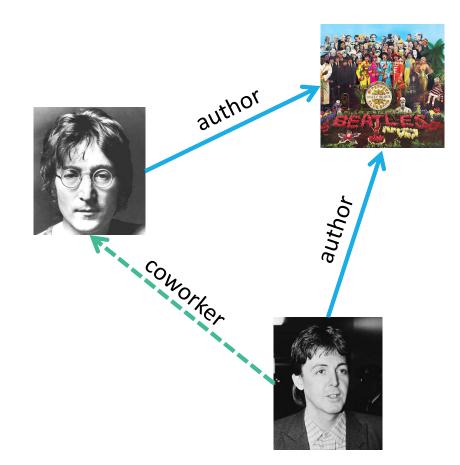
- ambiguous:
 - Ex: Beetles, beetles, Beatles
 - Ex: citizenOf, livedIn, bornIn



Extracted knowledge is:

• ambiguous

- incomplete
 - Ex: missing relationships
 - Ex: missing labels
 - Ex: missing entities

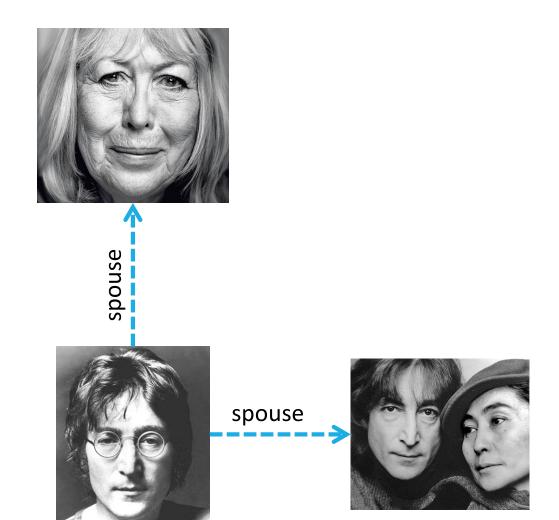


Extracted knowledge is:

• ambiguous

• incomplete

- inconsistent
 - Ex: Cynthia Lennon, Yoko Ono
 - Ex: exclusive labels (alive, dead)
 - Ex: domain-range constraints

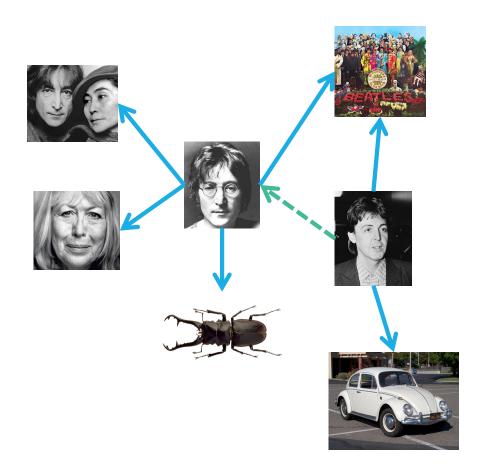


Extracted knowledge is:

ambiguous

• incomplete

• inconsistent



Graph Construction approach

• Graph construction cleans and completes extraction graph

Incorporate ontological constraints and relational patterns

• Discover statistical relationships within knowledge graph

Knowledge Graph Construction

TOPICS:

PROBLEM SETTING

PROBABILISTIC MODELS

Embedding Techniques

Graph Construction Probabilistic Models

TOPICS:

Overview

GRAPHICAL MODELS

Random Walk Methods

Graph Construction Probabilistic Models

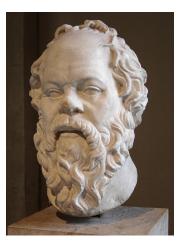
TOPICS:

OVERVIEW

GRAPHICAL MODELS

Random Walk Methods

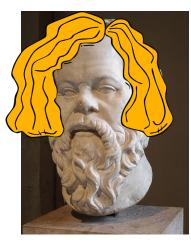
Beyond Pure Reasoning



Classical AI approach to knowledge: reasoning

Lbl(Socrates, Man) & Sub(Man, Mortal) -> Lbl(Socrates, Mortal)

Beyond Pure Reasoning



- Classical AI approach to knowledge: reasoning
- Lbl(Socrates, Man) & Sub(Man, Mortal) -> Lbl(Socrates, Mortal)
- Reasoning difficult when extracted knowledge has errors

Beyond Pure Reasoning

Classical AI approach to knowledge: reasoning

Lbl(Socrates, Man) & Sub(Man, Mortal) -> Lbl(Socrates, Mortal)

- Reasoning difficult when extracted knowledge has errors
- Solution: probabilistic models

P(Lbl(Socrates, Mortal)|Lbl(Socrates, Man)=0.9)

Graph Construction Probabilistic Models

TOPICS:

Overview

GRAPHICAL MODELS

Random Walk Methods

Graphical Models: Overview

• Define joint probability distribution on knowledge graphs

• Each candidate fact in the knowledge graph is a **variable**

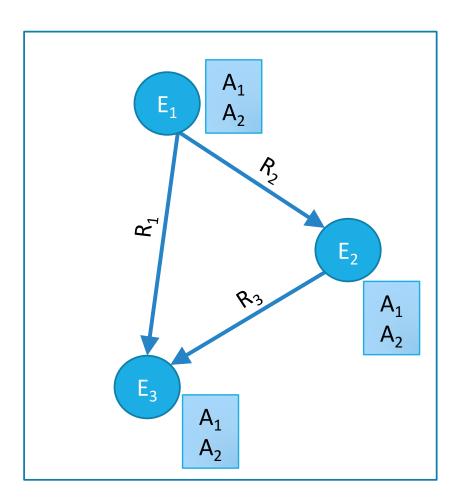
• Statistical signals, ontological knowledge and rules parameterize the **dependencies** between variables

• Find most likely knowledge graph by **optimization/sampling**

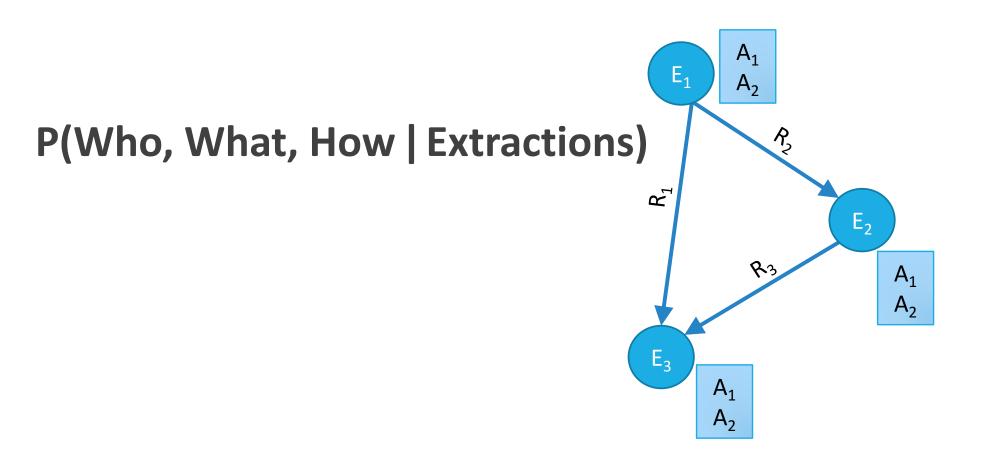
Knowledge Graph Identification

Define a graphical model to perform all three of these tasks simultaneously!

- Who are the entities (nodes) in the graph?
- What are their attributes and types (labels)?
- **How** are they related (edges)?



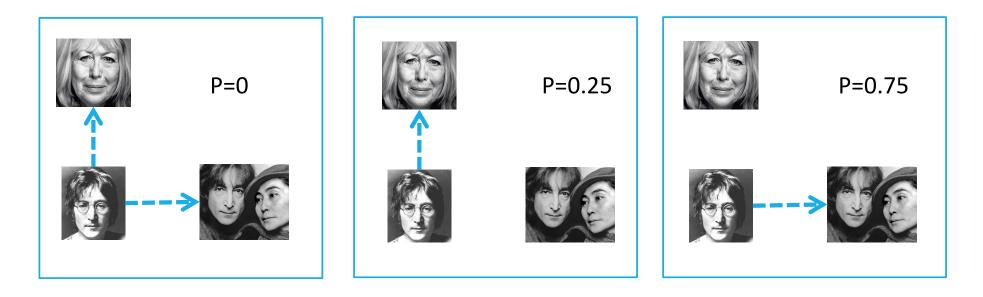
Knowledge Graph Identification



Probabilistic Models

• Use dependencies between facts in KG

• Probability defined *jointly* over facts



Statistical signals from text extractors and classifiers

Statistical signals from text extractors and classifiers

- P(R(John,Spouse,Yoko))=0.75; P(R(John,Spouse,Cynthia))=0.25
- LevenshteinSimilarity(Beatles, Beetles) = 0.9

• Statistical signals from text extractors and classifiers

Ontological knowledge about domain

Statistical signals from text extractors and classifiers

Ontological knowledge about domain

- Functional(Spouse) & R(A,Spouse,B) -> !R(A,Spouse,C)
- Range(Spouse, Person) & R(A,Spouse,B) -> Type(B, Person)

Statistical signals from text extractors and classifiers

Ontological knowledge about domain

Rules and patterns mined from data

• Statistical signals from text extractors and classifiers

Ontological knowledge about domain

Rules and patterns mined from data

- R(A, Spouse, B) & R(A, Lives, L) -> R(B, Lives, L)
- R(A, Spouse, B) & R(A, Child, C) -> R(B, Child, C)

Statistical signals from text extractors and classifiers

- P(R(John,Spouse,Yoko))=0.75; P(R(John,Spouse,Cynthia))=0.25
- LevenshteinSimilarity(Beatles, Beetles) = 0.9

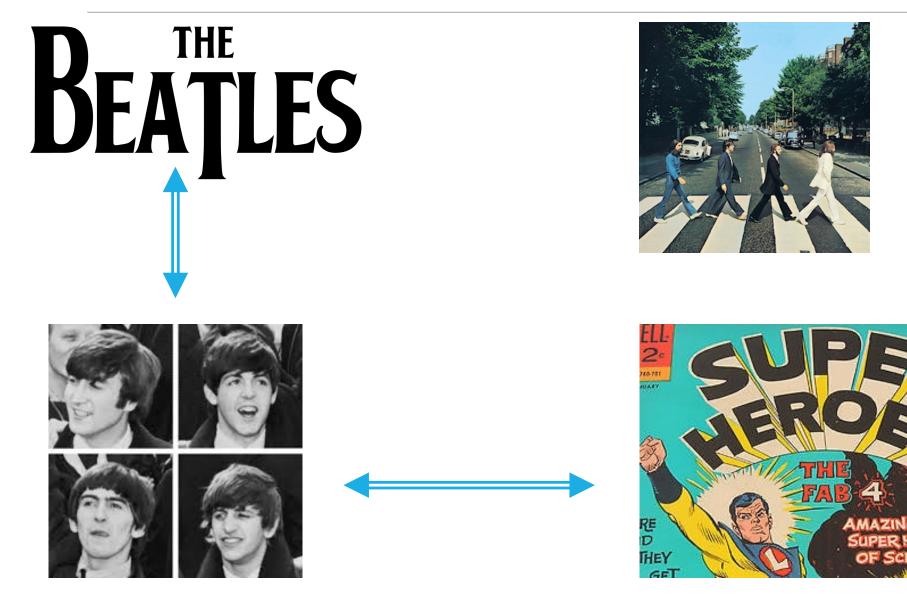
Ontological knowledge about domain

- Functional(Spouse) & R(A,Spouse,B) -> !R(A,Spouse,C)
- Range(Spouse, Person) & R(A,Spouse,B) -> Type(B, Person)

Rules and patterns mined from data

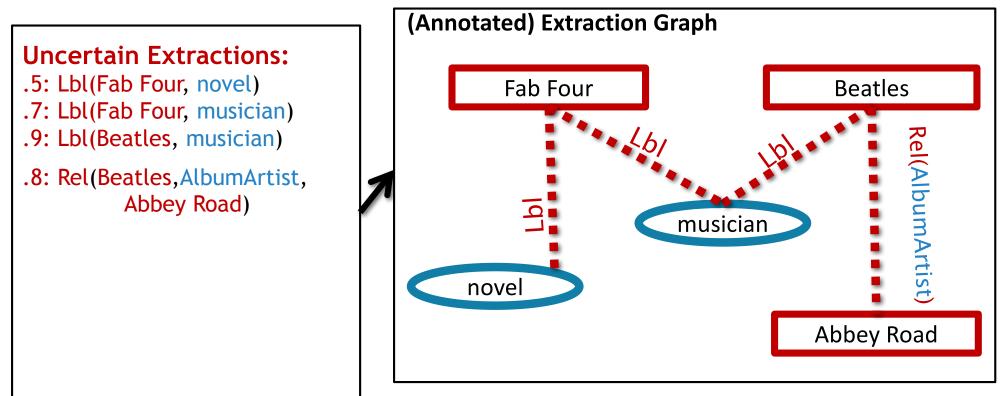
- R(A, Spouse, B) & R(A, Lives, L) -> R(B, Lives, L)
- R(A, Spouse, B) & R(A, Child, C) -> R(B, Child, C)

Example: The Fab Four

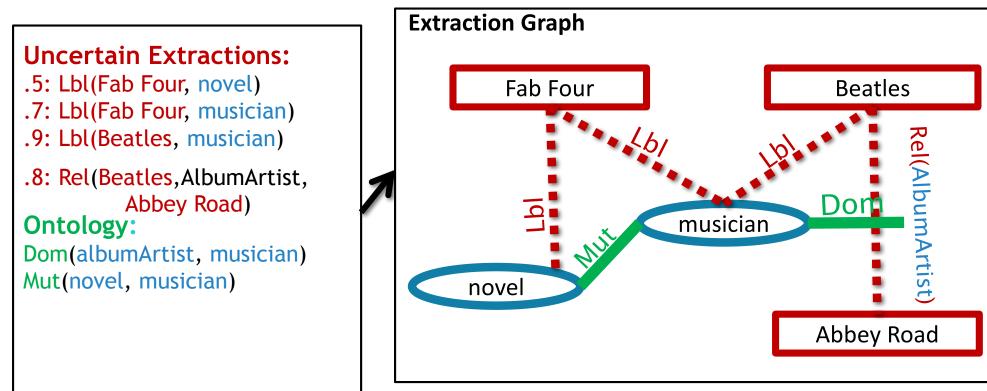


Uncertain Extractions:

- .5: Lbl(Fab Four, novel)
- .7: Lbl(Fab Four, musician)
- .9: Lbl(Beatles, musician)
- .8: Rel(Beatles, AlbumArtist, Abbey Road)



PUJARA+ISWC13; PUJARA+AIMAG15

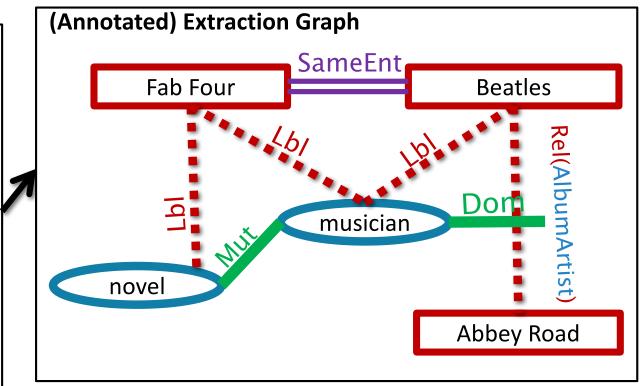


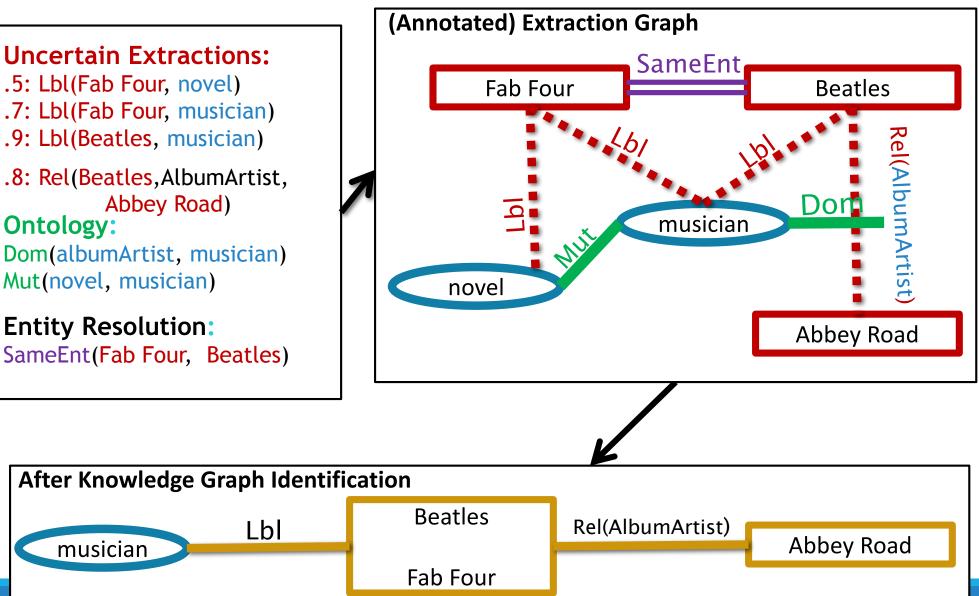
PUJARA+ISWC13; PUJARA+AIMAG15

Uncertain Extractions: .5: Lbl(Fab Four, novel) .7: Lbl(Fab Four, musician)

- .9: Lbl(Beatles, musician)
- .8: Rel(Beatles,AlbumArtist, Abbey Road) Ontology: Dom(albumArtist, musician) Mut(novel, musician)

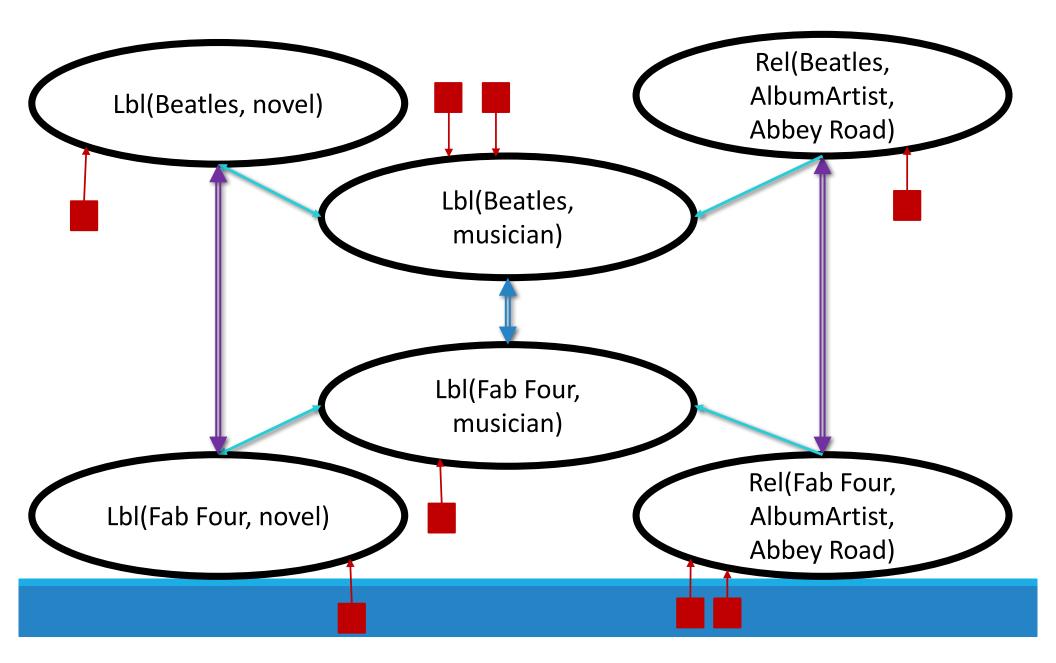
Entity Resolution: SameEnt(Fab Four, Beatles)





PUJARA+ISWC13; PUJARA+AIMAG15

Probabilistic graphical model for KG



Defining graphical models

Many options for defining a graphical model

- We focus on two approaches, MLNs and PSL, that use **rules**
- MLNs treat facts as Boolean, use sampling for satisfaction
- **PSL** infers a "truth value" for each fact via optimization

Rules for KG Model

100: 100:	<pre>Subsumes(L1,L2) Exclusive(L1,L2)</pre>		Label(E,L1) Label(E,L1)		Label(E,L2) !Label(E,L2)
100: 100: 100:	<pre>Inverse(R1,R2) Subsumes(R1,R2) Exclusive(R1,R2)</pre>	&	Relation(R1,E,O)	->	<pre>Relation(R2,0,E) Relation(R2,E,0) !Relation(R2,E,0)</pre>
100: 100:	<pre>Domain(R,L) Range(R,L)</pre>		<pre>Relation(R,E,O) Relation(R,E,O)</pre>		Label(E,L) Label(O,L)
10: 10:	<pre>SameEntity(E1,E2) SameEntity(E1,E2)</pre>		* * *		Label(E2,L) Relation(R,E2,O)
1: 1: 1: 1: 1:	<pre>Label_OBIE(E,L) Label_OpenIE(E,L) Relation_Pattern(R,E,O)</pre>		->	<pre>Label(E,L) Label(E,L) Relation(R,E,O) !Relation(R,E,O) !Label(E,L)</pre>	

Rules to Distributions

•Rules are *grounded* by substituting literals into formulas $\mathbf{w_r} : SAMEENT(Fab Four, Beatles) \land$

 $LBL(Beatles, musician) \Rightarrow LBL(Fab Four, musician)$

 $r \in R$

 $w_r \phi_r$

G, E)

•Each ground rule has a weighted *satisfaction* derived from the formula's truth value

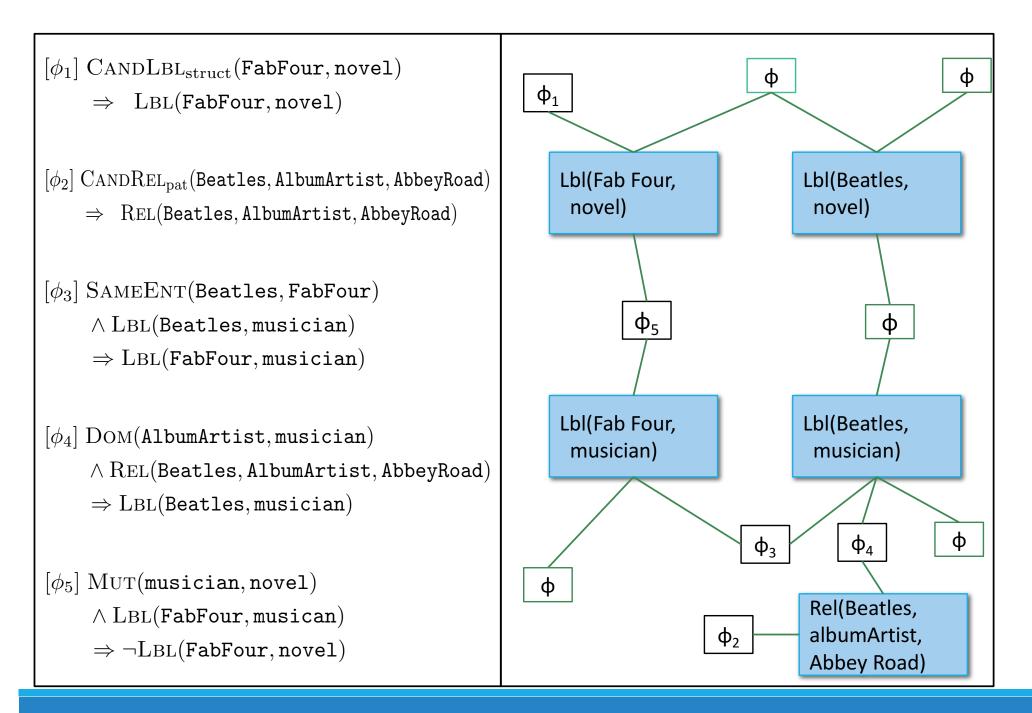
exp

 Together, the ground rules provide a joint probability distribution over knowledge graph facts, conditioned on the extractions

JIANG+ICDM12; PUJARA+ISWC13

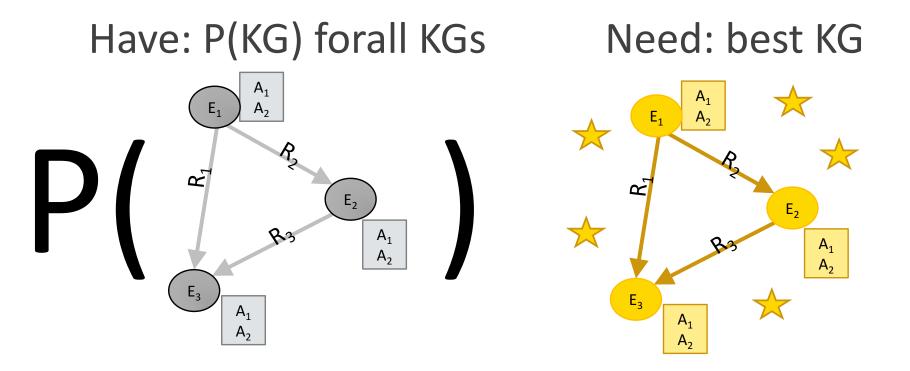
Probability Distribution over KGs

 $P(G \mid E) = \frac{1}{Z} \exp\left[-\sum_{r \in R} w_r \varphi_r(G)\right]$ $\operatorname{CANDLBL}_T(\texttt{FabFour},\texttt{novel})$ \Rightarrow LBL(FabFour, novel) Mut(novel, musician) \wedge LBL(Beatles, novel) $\Rightarrow \neg LBL(Beatles, musician)$ SAMEENT(Beatles, FabFour) \wedge LBL(Beatles, musician) \Rightarrow LBL(FabFour,musician)



PUJARA+ISWC13; PUJARA+AIMAG15

How do we get a knowledge graph?



MAP inference: optimizing over distribution to find the best knowledge graph

Inference and KG optimization

• Finding the best KG satisfying weighed rules: NP Hard

MLNs [discrete]: Monte Carlo sampling methods
Solution quality dependent on burn-in time, iterations, etc.

PSL [continuous]: optimize convex linear surrogate
 Fast optimization, ¾-optimal MAX SAT lower bound

Graphical Models Experiments

Data: ~1.5M extractions, ~70K ontological relations, ~500 relation/label types **Task:** Collectively construct a KG and evaluate on 25K target facts

Comparisons:

- **Extract** Average confidences of extractors for each fact in the NELL candidates
- **Rules** Default, rule-based heuristic strategy used by the NELL project
- MLN Jiang+, ICDM12 estimates marginal probabilities with MC-SAT
- **PSL** Pujara+, ISWC13 convex optimization of continuous truth values with ADMM

Running Time: Inference completes in 10 seconds, values for 25K facts

	AUC	F1
Extract	.873	.828
Rules	.765	.673
MLN (Jiang, 12)	.899	.836
PSL (Pujara, 13)	.904	.853

Graphical Models: Pros/Cons

BENEFITS

 Define probability distribution over KGs

DRAWBACKS

 Requires optimization over all KG facts - overkill

- Easily specified via rules
- Fuse knowledge from many different sources
- Dependent on rules from ontology/expert
- Require probabilistic semantics - unavailable

Graph Construction Probabilistic Models

TOPICS:

Overview

GRAPHICAL MODELS

RANDOM WALK METHODS

Random Walk Overview

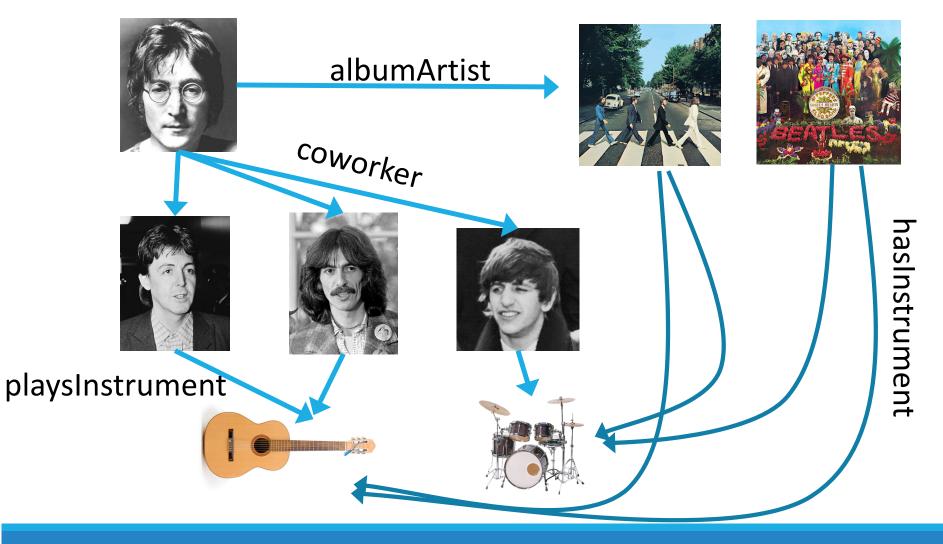
• Given: a query of an **entity** and **relation**

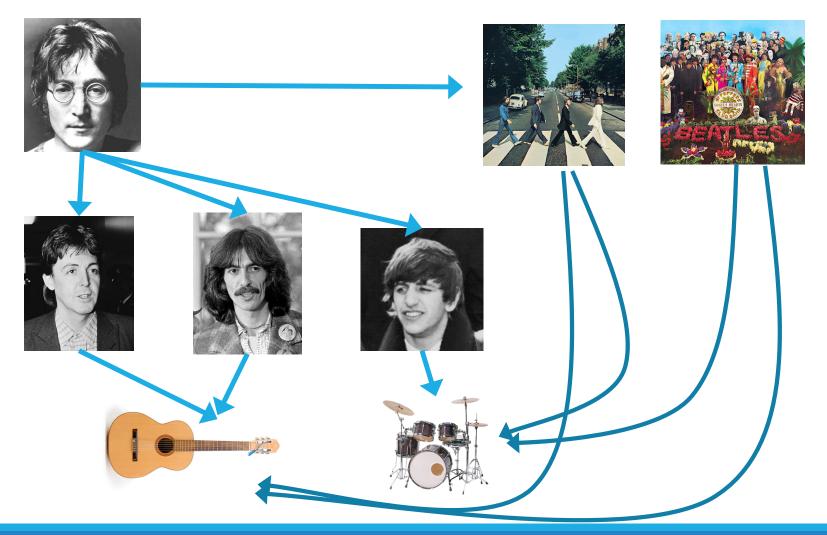
• Starting at the entity, **randomly walk** the KG

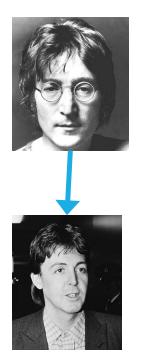
• Random walk ends when reaching an appropriate goal

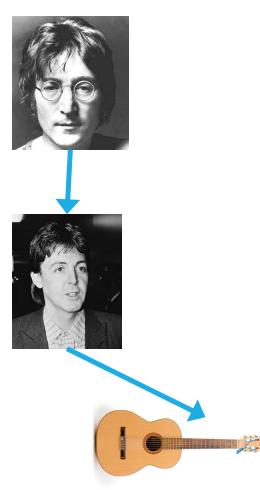
• Learned **parameters** bias choices in the random walk

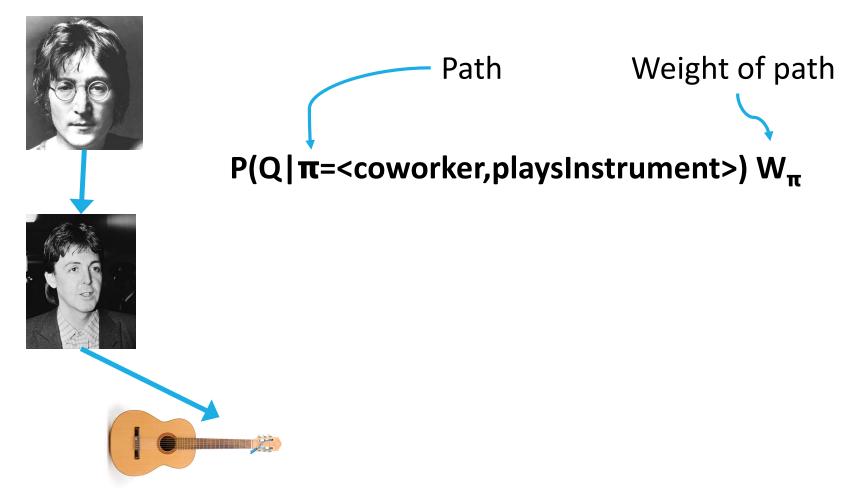
• Output **relative probabilities** of goal states



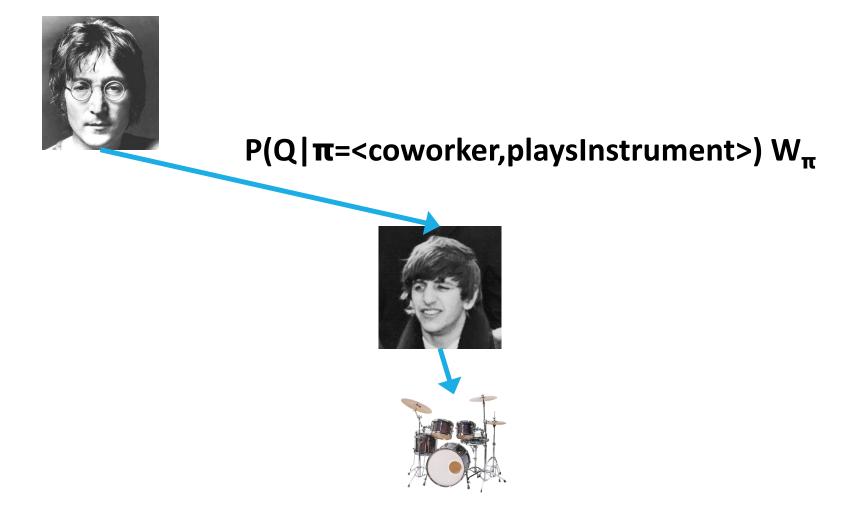


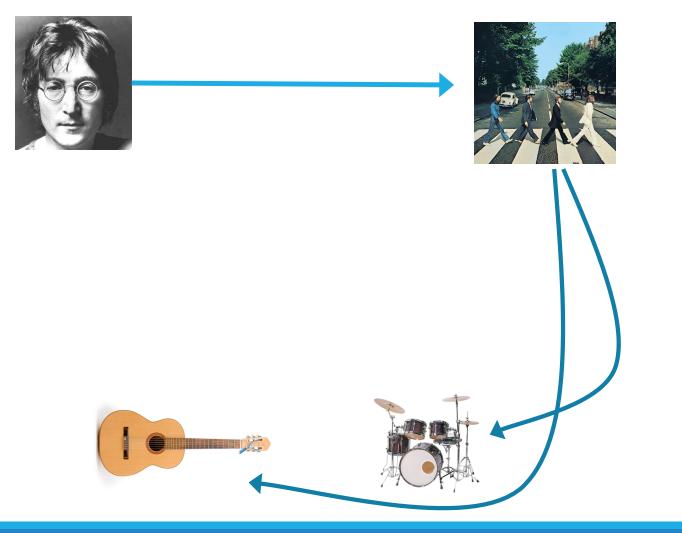


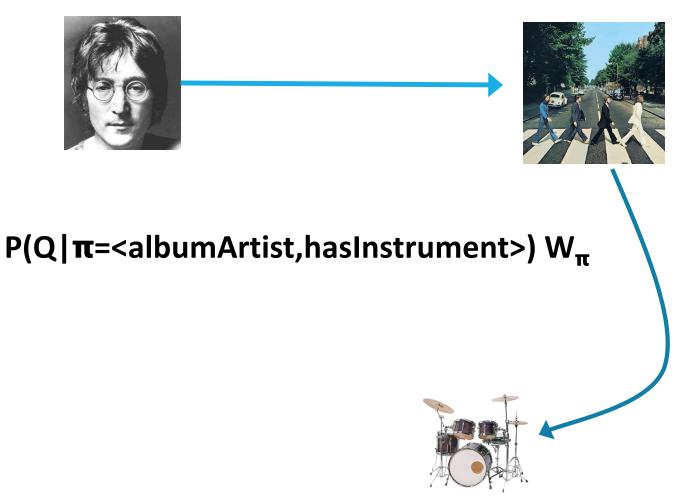


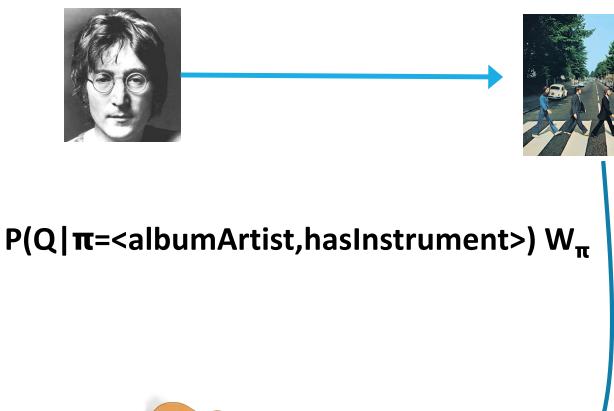


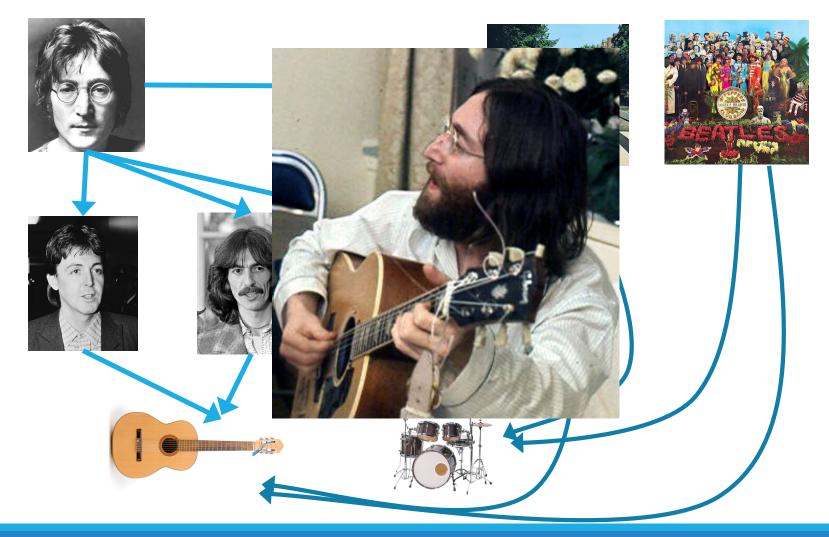












Recent Random Walk Methods

PRA: Path Ranking Algorithm

- Performs random walk of imperfect knowledge graph
- Estimates transition probabilities using KG
- For each relation, learns **parameters for paths** through the KG

ProPPR: Programming with Personalized PageRank

- Constructs proof graph
 - Nodes are partially-ground clauses with one or more facts
 - Edges are proof-transformations
- Parameters are learned for each ground entity and rule

Recent Random Walk Methods

PRA: Path Ranking Algorithm

- Performs random walk of imperfect knowledge graph
- Estimates transition probabilities using KG
- For each relation, learns **parameters for paths** through the KG

ProPPR: Programming with Personalized PageRank

- Constructs proof graph
 - Nodes are partially-ground clauses with one or more facts
 - Edges are proof-transformations
- Parameters are learned for each ground entity and rule

PRA in a nutshell

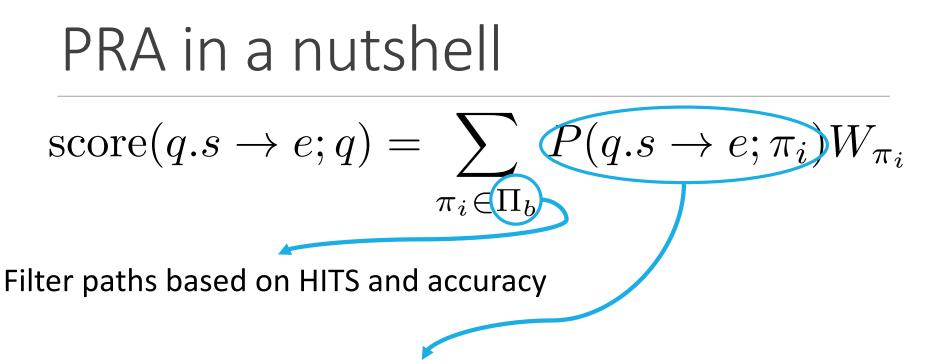
score
$$(q.s \to e; q) = \sum_{\pi_i \in \Pi_b} P(q.s \to e; \pi_i) W_{\pi_i}$$

LAO+EMNLP11

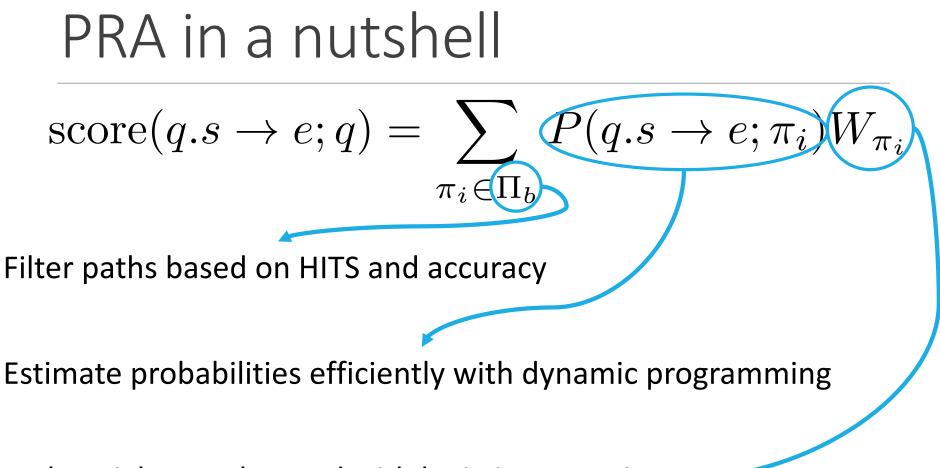
PRA in a nutshell

$$\operatorname{score}(q.s \to e; q) = \sum_{\pi_i \in \Pi_b} P(q.s \to e; \pi_i) W_{\pi_i}$$

Filter paths based on HITS and accuracy



Estimate probabilities efficiently with dynamic programming



Path weights are learned with logistic regression

Recent Random Walk Methods

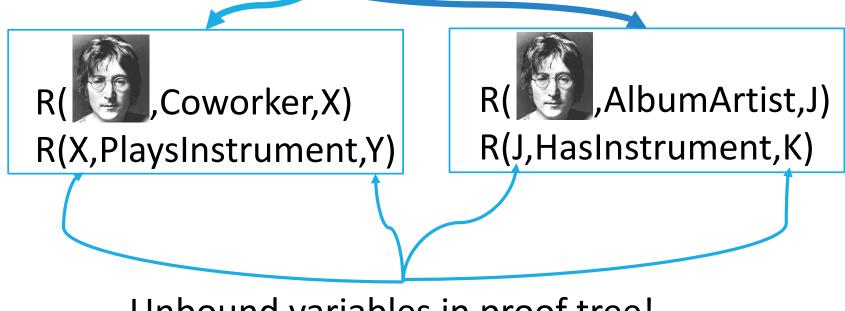
PRA: Path Ranking Algorithm

- Performs random walk of imperfect knowledge graph
- Estimates transition probabilities using KG
- For each relation, learns **parameters for paths** through the KG

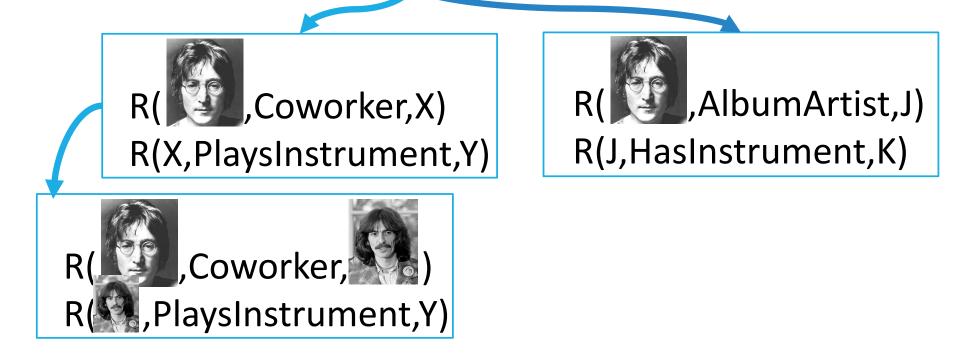
ProPPR: ProbLog + Personalized PageRank

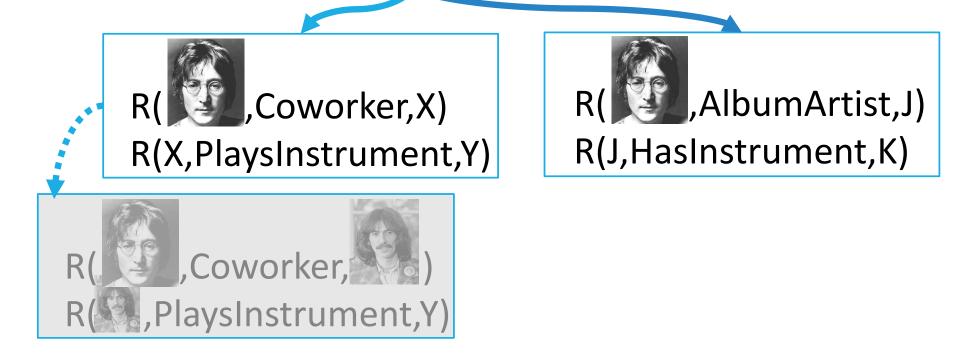
- Constructs proof graph
 - Nodes are partially-ground clauses with one or more facts
 - Edges are proof-transformations
- Parameters are learned for each ground entity and rule

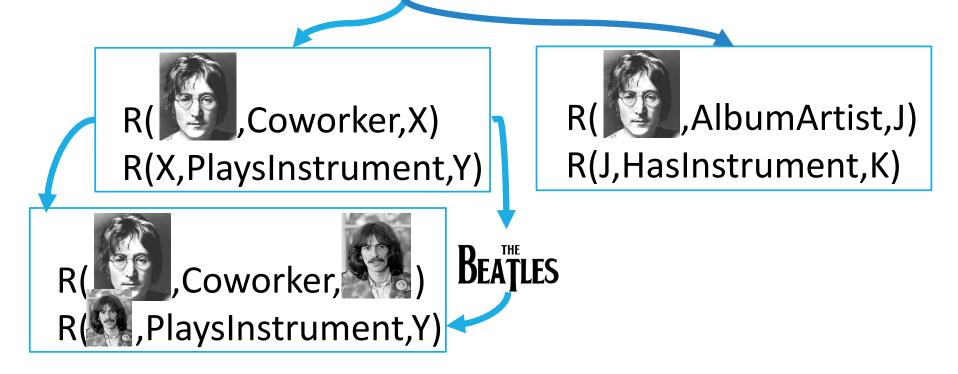
Query Q: R(Lennon, PlaysInstrument, ?)

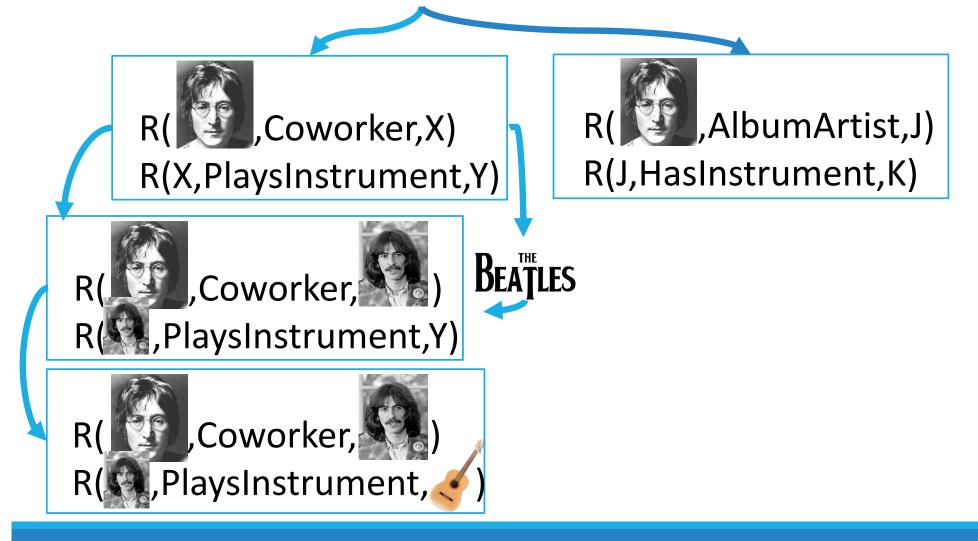


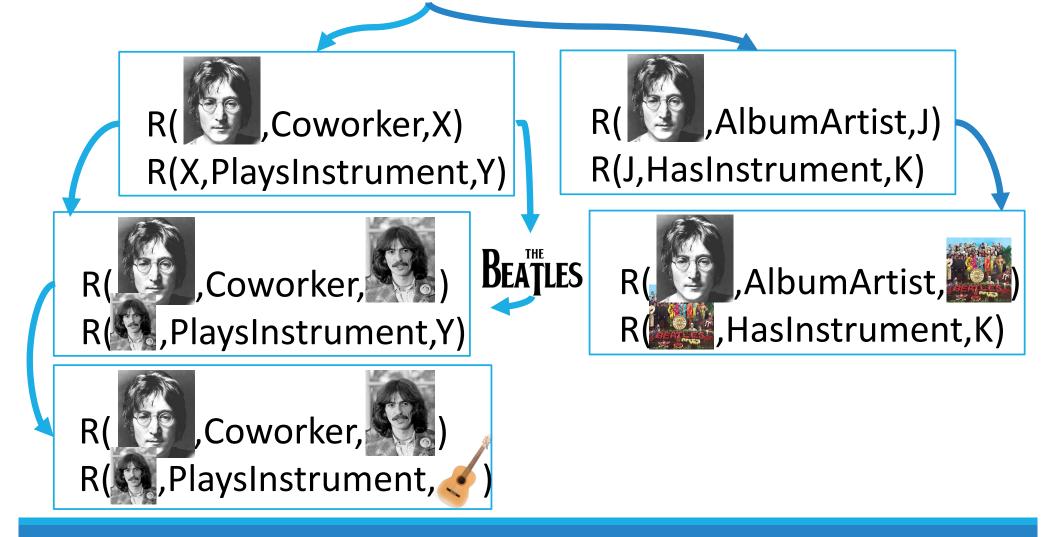
Unbound variables in proof tree!

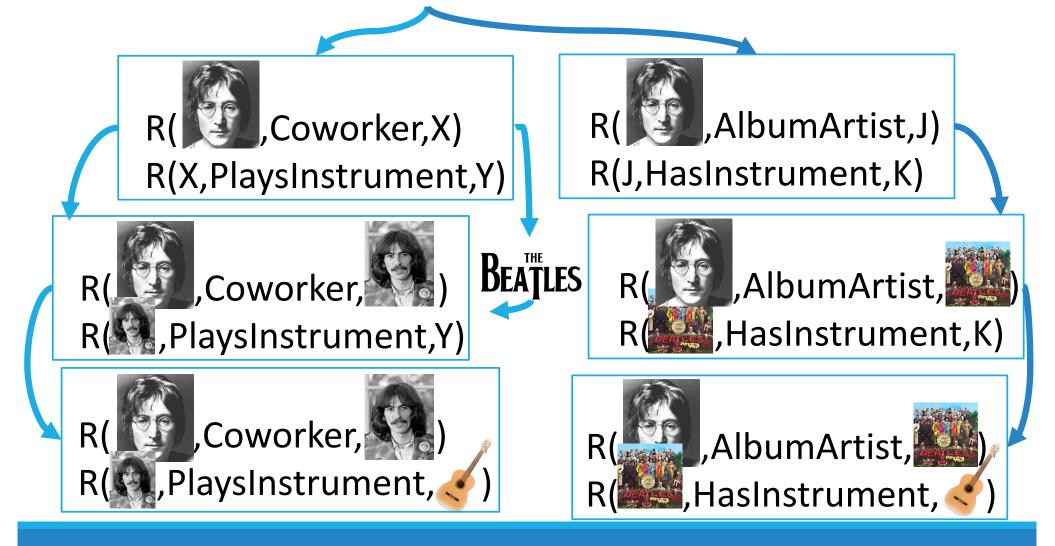




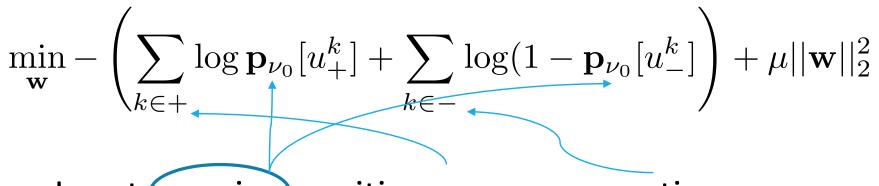








ProPPR in a nutshell

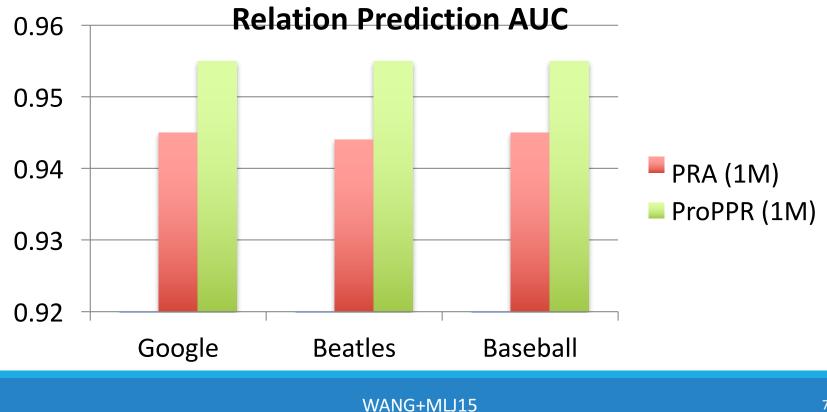


- Input: queries positive answers, negative answers
- Goal: $\mathbf{p}_{
 u_0}[u_+^k] \geq \mathbf{p}_{
 u_0}[u_-^k]$ (page rank from RW)
- Learn: random walk weights
- Train via stochastic gradient descent

Results from PRA and ProPPR

• Task:

- 1M extractions for 3 domains;
- ~100s of training queries
- ~1000s of test queries
- AUC of extractions alone is 0.7



Random Walks: Pros/Cons

BENEFITS

• KG query estimation independent of KG size

DRAWBACKS

• Full KG completion task inefficient

- Model training produces interpretable, logical rules
- Training data difficult to obtain at scale

- Robust to noisy extractions through probabilistic form
- Input must follow probabilistic semantics

Two classes of Probabilistic Models

GRAPHICAL MODELS

- Possible facts in KG are variables
- Logical rules relate facts

- Universally-quantified

RANDOM WALK METHODS

- Possible facts posed as queries
- Random walks of the KG constitute "proofs"
- Probability ∝ path lengths/transitions
- Locally grounded