Embedding-Based Techniques

MATRICES, TENSORS, AND NEURAL NETWORKS

Probabilistic Models: Downsides

Embeddings

Limitation to Logical Relations

- Representation restricted by manual design
- Clustering? Assymetric implications?
- Information flows through these relations
- Difficult to generalize to unseen entities/relations

Computational Complexity of Algorithms

- Complexity depends on explicit dimensionality
- Often NP-Hard, in size of data
- More rules, more expensive inference
- Query-time inference is sometimes NP-Hard
- Not trivial to parallelize, or use GPUs
- Everything as dense vectors
- Can capture many relations
- Learned from data
- Complexity depends on latent dimensions
- Learning using stochastic gradient, back-propagation
- Querying is often cheap
- GPU-parallelism friendly

Two Related Tasks

Two Related Tasks

What is NLP?

John was born in Liverpool, to Julia and Alfred Lennon.

Natural Language
Processing

What is Information Extraction?

Relation Extraction From Text

John was born in Liverpool, to Julia and Alfred Lennon.

Relation Extraction From Text

John was born in Liverpool, to Julia and Alfred Lennon.

"Distant" Supervision

No direct supervision gives us this information.
Supervised: Too expensive to label sentences
Rule-based: Too much variety in language
Both only work for a small set of relations, i.e. 10s, not 100s

Relation Extraction as a Matrix

John was born in Liverpool, to Julia and Alfred Lennon.

John Lennon, Liverpool
John Lennon, Julia Lennon
John Lennon, Alfred Lennon
Julia Lennon, Alfred Lennon

Barack Obama, Hawaii
Barack Obama, Michelle Obama
1

Matrix Factorization

Training: Stochastic Updates

relations

relations

Pick an observed cell, $R(i, j)$:

- Update $\mathbf{p}_{i j} \& \mathbf{r}_{R}$ such that $R(i, j)$ is higher

Pick any random cell, assume it is negative:

- Update $\mathbf{p}_{x y} \& \mathbf{r}_{R^{\prime}}$ such that $R^{\prime}(x, y)$ is lower

Relation Embeddings

Embeddings ~ Logical Relations

Relation Embeddings, w

- Similar embedding for 2 relations denote they are paraphrases
- is married to, spouseOf(X, Y), /person/spouse
- One embedding can be contained by another
- w(topEmployeeOf) $\subset w(e m p l o y e e O f)$
- topEmployeeOf(X,Y) \rightarrow employeeOf(X,Y)
- Can capture logical patterns, without needing to specify them!

Entity Pair Embeddings, v

Similar entity pairs denote similar relations between them
Entity pairs may describe multiple "relations"
independent foundedBy and employeeOf
relations

Similar Embeddings

similar underlying embedding
X own percentage of $Y \quad X$ buy stake in Y

Successfully predicts "Volvo owns percentage of Scania A.B." from "Volvo bought a stake in Scania A.B."

Implications

X historian at $Y \rightarrow X$ professor at Y
X professor at $Y \quad X$ historian at Y

Learns asymmetric entailment:
PER historian at UNIV \rightarrow PER professor at UNIV
But,
PER professor at UNIV \rightarrow PER historian at UNIV

Two Related Tasks

Graph Completion

Graph Completion

Tensor Formulation of KG

Factorize that Tensor

$$
S(r(a, b))=f\left(\mathbf{v}_{r}, \mathbf{v}_{a}, \mathbf{v}_{b}\right)
$$

Many Different Factorizations

CANDECOMP/PARAFAC-Decomposition

$$
S(r(a, b))=\sum_{k} R_{r, k} \cdot e_{a, k} \cdot e_{b, k}
$$

Tucker2 and RESCAL Decompositions

$$
S(r(a, b))=\left(\mathbf{R}_{r} \times \mathbf{e}_{a}\right) \times \mathbf{e}_{b}
$$

Model E

$$
S(r(a, b))=\mathbf{R}_{r, 1} \cdot \mathbf{e}_{a}+\mathbf{R}_{r, 2} \cdot \mathbf{e}_{b}
$$

Holographic Embeddings

Not tensor factorization
(per se)

$$
S(r(a, b))=\mathbf{R}_{r} \times\left(\mathbf{e}_{a} \star \mathbf{e}_{b}\right)
$$

Translation Embeddings

TransE

$$
S(r(a, b))=-\left\|\mathbf{e}_{a}+\mathbf{R}_{r}-\mathbf{e}_{b}\right\|_{2}^{2}
$$

TransH

$$
\begin{gathered}
S(r(a, b))=-\left\|\mathbf{e}_{a}^{\perp}+\mathbf{R}_{r}-\mathbf{e}_{b}^{\perp}\right\|_{2}^{2} \\
\mathbf{e}_{a}^{\perp}=\mathbf{e}_{a}-\mathbf{w}_{r}^{T} \mathbf{e}_{a} \mathbf{w}_{r}
\end{gathered}
$$

TransR
$S(r(a, b))=-\left\|\mathbf{e}_{a} \mathbf{M}_{r}+\mathbf{R}_{r}-\mathbf{e}_{b} \mathbf{M}_{r}\right\|_{2}^{2}$

Parameter Estimation

Observed cell: increase score

$$
S(r(a, b))
$$

Unobserved cell: decrease score

$$
S\left(r^{\prime}(x, y)\right)
$$

Matrix vs Tensor Factorization

- Vectors for each entity pair
- Can only predict for entity pairs that appear in text together
- No sharing for same entity in different entity pairs

- Vectors for each entity
- Assume entity pairs are "low-rank"
- But many relations are not!
- Spouse: you can have only ~1
- Cannot learn pair specific information

What they can, and can't, do..

- Red: deterministically implied by Black
- needs pair-specific embedding
- Only F is able to generalize
- Green: needs to estimate entity types
- needs entity-specific embedding
- Tensor factorization generalizes, F doesn't

- Blue: implied by Red and Green
- Nothing works much better than random

Joint Extraction+Completion

Compositional Neural Models

So far, we're learning vectors for each entity/surface pattern/relation..
But learning vectors independently ignores "composition"

Composition in Surface Patterns

- Every surface pattern is not unique
- Synonymy:
A is B's spouse.

$$
\mathrm{A} \text { is married to } \mathrm{B} \text {. }
$$

- Inverse: X is Y^{\prime} s parent.

$$
\mathbf{Y} \text { is one of } \mathrm{X}^{\prime} \text { s children. }
$$

- Can the representation learn this?

Composition in Relation Paths

- Every relation path is not unique
- Explicit: A parent B, B parent C

A grandparent \mathbf{C}

- Implicit:

```
X bornInCity Y, Y cityInState Z
    X "bornInState" Z
```

- Can the representation capture this?

Composing Dependency Paths

... was born to ..

\parentsOf
(never appears in training data)

But we don't need linked data to know they mean similar things...
Use neural networks to produce the embeddings from text!

... was born to ...

... 's parents are ...

\parentsOf

Composing Relational Paths

Review: Embedding Techniques

Two Related Tasks:

- Relation Extraction from Text
- Graph (or Link) Completion

Relation Extraction:

- Matrix Factorization Approaches

Graph Completion:

- Tensor Factorization Approaches

Compositional Neural Models

- Compose over dependency paths
- Compose over relation paths

Tutorial Overview

https://kgtutorial.github.io

Part 1: Knowledge Graphs

Part 4: Critical Analysis

