Embedding-Based Techniques

MATRICES, TENSORS, AND NEURAL NETWORKS
Probabilistic Models: Downsides

Limitation to Logical Relations
- Representation restricted by manual design
 - Clustering? Asymmetric implications?
 - Information flows through these relations
- Difficult to generalize to unseen entities/relations

Computational Complexity of Algorithms
- Complexity depends on explicit dimensionality
 - Often NP-Hard, in size of data
 - More rules, more expensive inference
- Query-time inference is sometimes NP-Hard
- Not trivial to parallelize, or use GPUs

Embeddings
- Everything as dense vectors
- Can capture many relations
- Learned from data
- Complexity depends on latent dimensions
- Learning using stochastic gradient, back-propagation
- Querying is often cheap
- GPU-parallelism friendly
Two Related Tasks
Two Related Tasks

Relation Extraction

Graph Completion
John was born in Liverpool, to Julia and Alfred Lennon.

What is NLP?

Natural Language Processing
What is Information Extraction?

John was born in Liverpool, to Julia and Alfred Lennon.
John was born in Liverpool, to Julia and Alfred Lennon.
John was born in Liverpool, to Julia and Alfred Lennon.
“Distant” Supervision

No direct supervision gives us this information.

Supervised: Too expensive to label sentences

Rule-based: Too much variety in language

Both only work for a small set of relations, i.e. 10s, not 100s
Relation Extraction as a Matrix

Example Sentence

John was born in Liverpool, to Julia and Alfred Lennon.

<table>
<thead>
<tr>
<th>Entity Pairs</th>
<th>Was born in</th>
<th>was born to</th>
<th>birthplace(X,Y)</th>
<th>spouse(X,Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Lennon, Liverpool</td>
<td>1</td>
<td>1</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>John Lennon, Julia Lennon</td>
<td>1</td>
<td>1</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>John Lennon, Alfred Lennon</td>
<td>1</td>
<td>1</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Julia Lennon, Alfred Lennon</td>
<td>1</td>
<td>1</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Barack Obama, Hawaii</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Barack Obama, Michelle Obama</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Universal Schema, Riedel et al, NAACL (2013)
Matrix Factorization

\[P(R(i, j)) = \sigma(p_{i,j} \cdot r_R) \]

\(\approx \sigma \)

\[\begin{pmatrix} n \times k \\ k \times m \end{pmatrix} \]

\(\begin{pmatrix} n \times m \\ n \times m \end{pmatrix} \)

\(\text{relations} \)

\(\text{pairs} \)

\(\text{bornIn}(\text{John}, \text{Liverpool}) \)

Universal Schema, Riedel et al, NAACL (2013)
Training: Stochastic Updates

Pick an observed cell, \(R(i, j) \):

- Update \(p_{ij} \) & \(r_R \) such that \(R(i, j) \) is higher

Pick any random cell, assume it is negative:

- Update \(p_{xy} \) & \(r_{R'} \) such that \(R'(x, y) \) is lower
Relation Embeddings
Embeddings ~ Logical Relations

Relation Embeddings, \(w \)
- Similar embedding for 2 relations denote they are paraphrases
 - is married to, spouseOf(X,Y), /person/spouse
- One embedding can be contained by another
 - \(w(\text{topEmployeeOf}) \subseteq w(\text{employeeOf}) \)
 - \(\text{topEmployeeOf}(X,Y) \rightarrow \text{employeeOf}(X,Y) \)
- Can capture logical patterns, without needing to specify them!

Entity Pair Embeddings, \(v \)
- Similar entity pairs denote similar relations between them
- Entity pairs may describe multiple “relations”
 - independent foundedBy and employeeOf relations
Similar Embeddings

<table>
<thead>
<tr>
<th>Time, Inc Amer. Tel. and Comm.</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volvo Scania A.B.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Campeau Federated Dept Stores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apple HP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Successfully predicts “Volvo owns percentage of Scania A.B.” from “Volvo bought a stake in Scania A.B.”

From Sebastian Riedel
Implications

(Freeman, Harvard) → (Boyle, Ohio State)

Learns asymmetric entailment:
PER historian at UNIV → PER professor at UNIV

But,
PER professor at UNIV ↦ PER historian at UNIV

Kevin Boyle
Ohio State

R. Freeman
Harvard

X historian at Y → X professor at Y

X professor at Y X historian at Y

<table>
<thead>
<tr>
<th></th>
<th>Kevin Boyle</th>
<th>R. Freeman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio State</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Harvard</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

From Sebastian Riedel
Two Related Tasks

Relation Extraction

Graph Completion

surface pattern
relation

relation

relation

relation

relation
Graph Completion

Liverpool

John Lennon

Alfred Lennon

Julia Lennon

LivedIn

“born in __, to”

“was born in”

Birthplace

ChildOf

“was born to”

“born in __, to”

LivedIn

“and”
Graph Completion

- **Liverpool**: birthplace of John Lennon.
- **John Lennon**: childOf Alfred Lennon and Julia Lennon.
- **Alfred Lennon**: spouse of Julia Lennon.
- **Julia Lennon**: spouse of Alfred Lennon.

The relationships are represented as:
- `livedIn`: Liverpool for John Lennon.
- `spouse`: Julia Lennon for Alfred Lennon.
- `spouse`: Alfred Lennon for Julia Lennon.
Tensor Formulation of KG

Does an unseen relation exist?
Factorize that Tensor

\[S(r(a, b)) = f(v_r, v_a, v_b) \]
Many Different Factorizations

CANDECOMP/PARAFAC-Decomposition

\[S(r(a, b)) = \sum_k R_{r,k} \cdot e_{a,k} \cdot e_{b,k} \]

Tucker2 and RESCAL Decompositions

\[S(r(a, b)) = (R_r \times e_a) \times e_b \]

Model E

\[S(r(a, b)) = R_{r,1} \cdot e_a + R_{r,2} \cdot e_b \]

Holographic Embeddings

\[S(r(a, b)) = R_r \times (e_a \star e_b) \]

Translation Embeddings

TransE

\[S(r(a, b)) = -\|e_a + R_r - e_b\|_2^2 \]

TransH

\[S(r(a, b)) = -\|e_a^\perp + R_r - e_b^\perp\|_2^2 \]

\[e_a^\perp = e_a - w_r^T e_a w_r \]

TransR

\[S(r(a, b)) = -\|e_a M_r + R_r - e_b M_r\|_2^2 \]

Parameter Estimation

Observed cell: increase score
\[S(r(a, b)) \]

Unobserved cell: decrease score
\[S(r'(x, y)) \]
Matrix vs Tensor Factorization

- Vectors for each entity pair
- Can only predict for entity pairs that appear in text together
- No sharing for same entity in different entity pairs

- Vectors for each entity
- Assume entity pairs are “low-rank”
 - But many relations are not!
 - Spouse: you can have only ~1
- Cannot learn pair specific information
What they can, and can’t, do.

- **Red**: deterministically implied by **Black**
 - needs *pair-specific* embedding
 - Only F is able to generalize
- **Green**: needs to estimate entity types
 - needs *entity-specific* embedding
 - Tensor factorization generalizes, F doesn't
- **Blue**: implied by **Red** and **Green**
 - Nothing works much better than random

Joint Extraction + Completion

Relation Extraction

Joint Model

Graph Completion

surface pattern

relation

relation

relation

relation

relation

relation

relation

relation

relation

relation
Compositional Neural Models

So far, we’re learning vectors for each entity/surface pattern/relation..

But learning vectors independently ignores “composition”

Composition in Surface Patterns

• Every surface pattern is not unique

• Synonymy: A is B’s spouse.
 A is married to B.

• Inverse: X is Y’s parent.
 Y is one of X’s children.

• Can the representation learn this?

Composition in Relation Paths

• Every relation path is not unique

• Explicit: A parent B, B parent C
 A grandparent C

• Implicit: X bornInCity Y, Y cityInState Z
 X “bornInState” Z

• Can the representation capture this?
Composing Dependency Paths

... was born to ...

... ‘s parents are ...
\parentsOf

(never appears in training data)

But we don’t need linked data to know they mean similar things...

Use neural networks to produce the embeddings from text!

Composing Relational Paths

Microsoft Seattle Washington USA

countryLocatedIn

stateLocatedIn

countryBasedIn

stateBasedIn

NN

Microsoft isBasedIn Seattle stateLocatedIn Washington countryLocatedIn USA

Review: Embedding Techniques

Two Related Tasks:
- Relation Extraction from Text
- Graph (or Link) Completion

Relation Extraction:
- Matrix Factorization Approaches

Graph Completion:
- Tensor Factorization Approaches

Compositional Neural Models
- Compose over dependency paths
- Compose over relation paths
Tutorial Overview

https://kgtutorial.github.io

Part 1: Knowledge Graphs

Part 2: Knowledge Extraction

Part 3: Graph Construction

Part 4: Critical Analysis