Tutorial Overview

Part 4: Critical Analysis

Tutorial Outline

Knowledge Graph Primer [Jay] 1. [Jay] **Knowledge Extraction Primer** 2. **Coffee Break Knowledge Graph Construction** 3. **Probabilistic Models** [Jay] а. [Sameer] Embedding Techniques b. Critical Overview and Conclusion [Sameer] 4.

Critical Overview

SUMMARY

SUCCESS STORIES

DATASETS, TASKS, SOFTWARES

EXCITING RESEARCH DIRECTIONS

Critical Overview

SUMMARY

SUCCESS STORIES

DATASETS, TASKS, SOFTWARES

EXCITING RESEARCH DIRECTIONS

Why do we need Knowledge graphs?

- Humans can explore large database in intuitive ways
- Al agents get access to human common sense knowledge

Knowledge graph construction

- Who are the entities (nodes) in the graph?
- What are their attributes and types (labels)?
- **How** are they related (edges)?

Knowledge Graph Construction

Two perspectives

	Extraction graph	Knowledge graph
Who are the entities? (nodes)	 Named Entity Recognition Entity Coreference 	Entity LinkingEntity Resolution
What are their attributes? (labels)	 Entity Typing 	Collective classification
How are they related? (edges)	Semantic role labelingRelation Extraction	Link prediction

Knowledge Extraction

John was born in Liverpool, to Julia and Alfred Lennon. Text

Information Extraction

Fusing multiple extractors

Knowledge Graph Construction

Issues with Extraction Graph

Extracted knowledge could be:

• ambiguous

• incomplete

• inconsistent

Two approaches for KG construction

PROBABILISTIC MODELS EMBEDDING BASED MODELS

Two approaches for KG construction

PROBABILISTIC MODELS

EMBEDDING BASED MODELS

Two classes of Probabilistic Models

GRAPHICAL MODEL BASED

- Possible facts in KG are variables
- Logical rules relate facts

- Probability ∝ satisfied rules
- Universal-quantification

RANDOM WALK BASED

- Possible facts posed as queries
- Random walks of the KG constitute "proofs"
- Probability ∝ path lengths/transitions
- Local grounding

Illustration of KG Identification

Random Walk Illustration

Query: R(Lennon, PlaysInstrument, ?)

Two approaches for KG construction

PROBABILISTIC MODELS

EMBEDDING BASED MODELS

Why embeddings?

Limitations of probabilistic models

Limitation to Logical Relations

- Representation restricted by manual design
 - Clustering? Asymmetric implications?
 - Information flows through these relations
- Difficult to generalize to unseen entities/relations

Computational Complexity of Algorithms

- Learning is NP-Hard, difficult to approximate
- Query-time inference is also NP-Hard
- Not easy to parallelize, or use GPUs
- Scalability is badly affected by representation

Embedding based models

- Can generalize to unseen entities and relations
- Efficient inference at large scale

Relation Embeddings

Critical Overview

SUMMARY

SUCCESS STORIES

DATASETS, TASKS, SOFTWARES

EXCITING RESEARCH DIRECTIONS

Success stories

Open Information Extraction

NELL Knowledge Base Browser CMU Read the Web Project

Success story: OpenIE (ReVerb)

-	
	(
	N.

Open Information Extraction

openie.allenai.org

Argument 1: entity:The Beatles Argument 2:	Relation: All + Q Search		
all location (21) film location (18) statistic more types	cal region (16) name source (15) travel destination (14) misc.		
were bigger than Jesus (100)	are a great band » *		
came to America (95)	Extracted Synonyms:		
appeared on The Ed Sullivan Show (88)	were is		
broke up in 1970 (56)	was Extracted from these sentences: are The Beatles are the best band , hands down but Oasis did		
Here Comes the Sun (46)			
came to America (45)	make a great cover . (via ClueWeb12) The Beatles are a great band . (via ClueWeb12) The Beatles are the best band . (via ClueWeb12) The Beatles are the greatest band Started 1 month ago by georgedcc Yeah , Songs in the Key of Life is a bit much for 1 listen . (via ClueWeb12)		
is for the future (44)			
are a great band (42)			
perform on The Ed Sullivan Show (39)	The Beatles, arguably, are the greatest band, and may or may not have the greatest name. (via ClueWeb12) The point is, from my view, The Beatles are a good band, but way behind the greatest artists to ever grace rock. (via ClueWeb12)		
were Musical ensemble (36)			

Success story: NELL

NELL Knowledge Base Browser

CMU Read the Web Project

categories relations

everypromotedthing abstractthing

- event
- convention
- musicfestival
- protestevent
- meetingeventtitle
- conference
- mlconference
- weatherphenomenon
- sportsevent
- sportsgame race
- olympics
- grandprix
- crimeorcharge
- earthquakeevent
- election
- bombingevent
- militaryeventtype militaryconflict
- productlaunchevent
- filmfestival
- roadaccidentevent
- meetingeventtype
- eventoutcome
- mlalgorithm
- physiologicalcondition disease

beatles (musicartist) literal strings: **BEATLES**, **Beatles**, beatles

Help NELL Learn!

If they are or ever were, click thumbs-up. Otherwise, click thumbs-down.

- beatles is a musical artist 🏼 🎝 ኛ
- beatles is a musician in the genre classic_pop (musicgenre) 🗳 ኛ
- beatles is a musician in the genre pop (musicgenre)
- beatles is a musician in the genre rock (musicgenre)
- beatles is a musician in the genre classic rock (musicgenre)

categories

- musicartist(100.0%)
 - MBL @198 (100.0%) on 07-feb-2011 [Promotion of musicartist:beatles musicartistgenre musicgenre:classic_rock]
 - CPL @1021 (80.9%) on 14-oct-2016 ["numerous other artists including _" "traducidas de _" "_ incluidas en" "_ had a guitar player" "early CPL @1021 (80.9%) on 14-oct-2016 ["numerous other artists including __" "traducidas de __" __ incluidas en" __ had a guitar player" "early pioneers such as __" "controversial photo of __" "distressed image of __" "D-tracks of __" "Beatles Come Together __" "ohne die __" "opening band for __" "American acts like __" classic acts like __" "performance footage of __" __ were the perfect band" __' record label" "record label" "cercord album by __" "les paroles de __" __ never recorded the song" "such renowned artists as __" "_ did a few songs" "Top artists include __" "crazy lives of __ "UK artists such as __" "Lennon started __" __' musical talent" '_ ' Birthplace" '_ ' harmonies" "Tour , starring __" _' last days" '_ ' fourth album" '_ ' sixth studio album" '_ ' original recordings" "They were also pushing __" "She Said by __" "Other artists featured include __" "Post general comments related to _" "track also shows _" "such major artists as _" "time favorite band is _" "past masters such as _" "pop influenced by _" " = " the favorite band is _" "pop iscons such as __" "music artists like _" "music bands like _" "pop stars such as _" "pop influenced by _"

NELL wants to know if these beliefs are correct.

Search

log in | preferences | help/instructions | feedbac

Success story: <u>YAGO</u>

- Input: Wikipedia infoboxes, WordNet and GeoNames
- **Output:** KG with 350K entity types, 10M entities, 120M facts
- Temporal and spatial information

<u>Link</u>

en beatles

An English term in ConceptNet 5.5

Derived terms

en beatle →

- 💼 beatledom 🔿
- 💼 beatlemania 🔿
- 💼 beatlesque 🔿
- 💼 fourth beatle 🔿

beatles is a type of...

en a British band → en man ⁽ⁿ⁾ → en band ⁽ⁿ⁾ → en musician ⁽ⁿ⁾ → en album ⁽ⁿ⁾ →

Links to other sites

dbpedia.org The Beatles →
sw.opencyc.org Beatle →
umbel.org Beatle →
wordnet-rdf.princeton.edu 400520405-N →
wordnet-rdf.princeton.edu 108386847-n →
wikidata.dbpedia.org Q1299 →
en.wiktionary.org Beatles →
dbpedia.org The Beatles (No. 1) →
wikidata.dbpedia.org Q738260 →
fr.wiktionary.org Beatles →
dbpedia.org The Beatles (The Original
Studio Recordings) →
wikidata.dbpedia.org Q603122 →

Success story

- <u>DBPedia</u> is automatically extracted structured data from Wikipedia
 - 17M canonical entities
 - 88M type statements
 - 72M infobox statements

DeepDive

Think about features, not algorithms.

 Best Precision/recall/F1 in KBP-slot filling task 2014 evaluations (31 teams participated)

29

IE systems in practice

Critical Overview

SUMMARY

SUCCESS STORIES

DATASETS, TASKS, SOFTWARES

EXCITING RESEARCH DIRECTIONS

Datasets

- KG as datasets
 - FB15K-237 Knowledge base completion dataset based on Freebase¹
 - DBPedia Structured data extracted from Wikipedia
 - NELL Read the web datasets
 - AristoKB Tuple knowledge base for Science domain
- Text datasets
 - <u>Clueweb09</u>: 1 billion webpages (sample of Web)
 - FACC1: Freebase Annotations of the Clueweb09 Corpora
 - Gigaword: automatically-generated syntactic and discourse structure
 - <u>NYTimes</u>: The New York Times Annotated Corpus
- Datasets related to Semi-supervised learning for information extraction <u>Link</u>: entity typing, concept discovery, aligning glosses to KB, multi-view learning

¹see Dettmers et al, 2017 for details (<u>https://arxiv.org/pdf/1707.01476.pdf</u>)

Shared tasks

- Text Analysis Conference on Knowledge Base Population (TAC KBP)
 - Slot filling task
 - Cold Start KBP Track
 - Tri-Lingual Entity Discovery and Linking Track (EDL)
 - Event Track
 - Validation/Ensembling Track

Software: NLP

- Stanford CoreNLP: a suite of core NLP tools
 [link] (Java code)
- FIGER: fine-grained entity recognizer assigns over 100 semantic types <u>link</u> (Java code)
- FACTORIE: out-of-the-box tools for NLP and information integration <u>link</u> (Scala code)
- EasySRL: Semantic role labeling <u>link</u> (Java code)

UNIVERSITY of WASHINGTON

UNIVERSITY of WASHINGTON

Software: Extracting and Reasoning

• Open IE

(University of Washington) Open IE 4.2 <u>link</u> (Scala code) Stanford Open IE <u>link</u> (Java code)

- Interactive Knowledge Extraction (IKE) (Allen Institute for Artificial Intelligence) <u>link</u> (Scala code)
- PSL: Probabilistic soft logic <u>link</u> (Java code)

 ProPPR: Programming with Personalized PageRank <u>link</u> (Java code)

Carnegie Mellon University

Critical Overview

SUMMARY

SUCCESS STORIES

DATASETS, TASKS, SOFTWARES

EXCITING RESEARCH DIRECTIONS

Exciting Active Research

- INTERESTING APPLICATIONS OF KG
- MULTI-MODAL INFORMATION EXTRACTION
- KNOWLEDGE AS SUPERVISION
- COMMON KNOWLEDGE

Exciting Active Research

- INTERESTING APPLICATIONS OF KG
- MULTI-MODAL INFORMATION EXTRACTION
- KNOWLEDGE AS SUPERVISION
- COMMON KNOWLEDGE

Interesting application of Knowledge Graphs

The Literome Project [link]

- Automatic system for extracting genomic knowledge from PubMed articles
- Web-accessible knowledge base

Search for directed genic interactions:	abl1		ctnnb1		Search	help	
Search for genotype-phenotype associa	tions:	brca1		breast n	eoplasm	Search	help

Interesting application of Knowledge Graphs

Chronic disease management:

develop AI technology for predictive and preventive personalized medicine to reduce the national healthcare expenditure on chronic diseases (90% of total cost)

Exciting Active Research

- INTERESTING APPLICATIONS OF KG
- <u>MULTI-MODAL INFORMATION EXTRACTION</u>
- KNOWLEDGE AS SUPERVISION
- COMMON KNOWLEDGE

Knowledge Base Completion

Table from Dettmers, et al. (2017)

Multimodal KB Embeddings

Exciting Active Research

- INTERESTING APPLICATIONS OF KG
- MULTI-MODAL INFORMATION EXTRACTION
- KNOWLEDGE AS SUPERVISION
- COMMON KNOWLEDGE

Knowledge as Supervision

Exciting Active Research

- INTERESTING APPLICATIONS OF KG
- MULTI-MODAL INFORMATION EXTRACTION
- KNOWLEDGE AS SUPERVISION
- <u>COMMON KNOWLEDGE</u>

Aristo Science QA challenge

<u>Science questions dataset</u>

~5K 4-way multiple choice questions

Frogs lay eggs that develop into tadpoles and then into adult frogs. This sequence of changes is an example of how living things _____

(A) go through a life cycle

- (B) form a food web
- (C) act as a source of food
- (D) affect other parts of the ecosystem

frog is an animal, animals have life cycle

Thank You

Jay Pujara jaypujara.org jay@cs.umd.edu @jay_mlr

Sameer Singh sameersingh.org sameer@uci.edu @sameer_

Two perspectives

	Extraction graph	Knowledge graph
Who are the entities? (nodes)		
What are their attributes? (labels)		
How are they related? (edges)		

Natural Language Processing

Dependency Parsing, Part of speech tagging, Named entity recognition...

Sentence

John was born in Liverpool, to Julia and Alfred Lennon.

NLP annotations \rightarrow features for IE

Combine tokens, dependency paths, and entity types to define rules.

Bill Gates, the CEO of Microsoft, said ...

Mr. Jobs, the brilliant and charming CEO of Apple Inc., said ...

- ... announced by Steve Jobs, the CEO of Apple.
- ... announced by Bill Gates, the director and CEO of Microsoft. ... mused Bill, a former CEO of Microsoft. and many other possible instantiations...

Success story: OpenIE

• Key contributions:

- No need for human defined relation schemas
- First ever successful open-source open domain IE system

ReVerb

- Input = <u>Clueweb09 corpus</u> (1B web pages)
- Output = 15M high-precision extractions

Open IE Systems

2007	2010	2012	2014	2016
OpenIE v 1.0 TextRunner	v 2.0 ReVerb	v 3.0 OLLIE	OpenIE 4.0	OpenIE 5.0
CRF Self- training	POS-tag based relation extraction	Dependency parse based extraction	SRL-based extraction; temporal, spatial extractions	Supports compound noun phrases; numbers; lists

Increase in precision, recall, expressiveness

Derived from Prof. Mausam's slides

Success story: <u>NELL</u>

• Key technical contributions:

- "Never ending learning" paradigm
- "Coupled bootstrap learning" to reduce semantic drift
- Input: <u>Clueweb09 corpus</u> (1B web pages)
- Ontology: ~2K predicates O(100K)constraints between predicates
- Output: 50 million candidate facts
 3 million high-confidence facts

Success story: <u>YAGO</u>

• Key contributions:

- **Rich Ontology:** Linking Wikipedia categories to WordNet
- **High Quality:** High precision extractions (~95%)

Success story: ConceptNet

Commonsense knowledge base

- Key contributions:
 - Freely available resource: covers wide range of common sense concepts and relations organized in a easy-to-use semantic network
 - NLP toolkit based on this resource: supports analogy, text summarization, context dependent inferences
- ConceptNet4 was manually built using inputs from thousands of people
 - 28 million facts expressed in natural language
 - spanning 304 different languages

DeepDive

- Machine learning based extraction system
- Key contributions:
 - scalable, high-performance inference and learning engine
 - Developers contribute features (rules) not algorithms
 - Combines data from variety of sources (webpages, pdf, figures, tables)

Future.....

Aristo ScienceKB

• AI2's TupleKB dataset: link

Open problems

- Best KR for Science domain
- Domain targeted KB completion
- Measuring recall w.r.t. end task

(1) Future research directions: Going beyond facts

- Most of the existing KGs are designed to represent and extract binary relations → good enough for search engines
- Applications like QA demand in depth knowledge about higher level structures like activities, events, processes

(2) Future research directions: Online KG Construction

- One shot KG construction ightarrow Online KG construction
 - Consume online stream of data
 - Temporal scoping of facts
 - Discovering new concepts automatically
 - Self-correcting systems

(2) Future research directions: Online KG Construction

- Continuously learning and self-correcting systems
 - [Selecting Actions for Resource-bounded Information Extraction using Reinforcement Learning, Kanani and McCallum, WSDM 2012]
 - Presented a reinforcement learning framework for budget constrained information extraction
 - [Never-Ending Learning, Mitchell et al. AAAI 2015]
 - Tom Mitchell says "Self reflection and an explicit agenda of learning subgoals" is an important direction of future research for continuously learning systems.

Existing knowledge graphs

- Too named entity centric (no domain relevance)
- Too noisy (not directly usable by inference systems)

Hybrid Approach: Adding structure to Open domain IE

**Upcoming article on ``High Precision Knowledge Extraction for Science domain"

Future research directions: Going beyond facts

- Fact: Individual knowledge tuples (plant, take in, CO2)
- Event frame: more context how, when, where?

subject	plant
predicate	Take in
object	CO2
time	daytime

• Processes:

representing larger structures, sequence of events e.g. Photosynthesis

(3) Exciting active research: Ambitious Project

The Allen Al Science Challenge

Is your model smarter than an 8th grader?

\$80,000 · a year ago

#	∆1w	Team Name 🛊 in the money	Kernel	Team Members	Score 🕑	Entries	Last
1	_	 Alejandro Mosquera 		8	0.59375	2	1y
2	new	* Cardal			0.59000	2	1y
3	new	* poweredByTalkwalker		A +4	0.59000	4	1y

(2) Exciting active research: Multi-modal information extraction

NEIL: Extracting Visual Knowledge from Web Data

[Chen et al., "NEIL: Extracting Visual Knowledge from Web Data," ICCV 2013]

NEIL: Extracting Visual Knowledge from Web Data

- Keyboard is a part of Desktop Computer
- Television looks similar to Monitor

WebChild: Text + Images

WEBCHILD Commonsense Browser

e.g. car,bicycle OR car OR a:fix bicycle

Q

Guess the concept

Domain	•
Comparable	
Physical Part	
Activity	
Property	
Location	•
Ask me!	

a hand-operated electronic device that controls the coordinates of a cursor on your computer screen as you move it around on a pad; on the bottom of the device is a ball that rolls on the surface of the pad; 'a mouse takes much more room than a trackball'

keyboard

mouse

device consisting of a set of keys on a piano or organ or typewriter or typesetting machine or computer or the

like

Knowledge Base Completion

 $(S) \xrightarrow{R} (O)$

Entity Prediction

Link Prediction

Restrictions in the Model

Each object has a vector representation:

- Limits number of objects
- Large number of parameters
- Is not compositional (doesn't generalize)

What about other kinds of objects?

- Dates and Numbers: should generalize
- Text: Names and Descriptions
- Images: Portraits, Posters, etc.

Multimodal KB Embeddings

Augmenting Existing Datasets

MovieLens-100k-plus	

Relations	13
Users	943
Movies	1682
Posters	1651
Ratings	100,000

YAGO3-10-plus		
Relations	37 → 45	
Entities	123,182	
Structure Triples	1,079,040	
Numbers (Years)	1651	
Descriptions	107,326	
Images	61,246	